A new method for early assessment of effects of exposing two non-target crustacean species, Asellus aquaticus and Gammarus fossarum, to pesticides, a laboratory study

2010 ◽  
Vol 26 (4) ◽  
pp. 217-228 ◽  
Author(s):  
Simon Lukančič ◽  
Uroš Žibrat ◽  
Tadej Mezek ◽  
Andreja Jerebic ◽  
Tatjana Simčič ◽  
...  

A reliable method is needed for assessing the condition of aquatic animals and their resistance to toxic pollutants. The physiological responses of two freshwater crustaceans, Asellus aquaticus and Gammarus fossarum, following in vitro exposure to two pesticides (atrazine and imidacloprid), were measured by a combination of electron transport system (ETS) activity and respiration (R). Short-term exposure concentrations were selected according to standard toxicity tests and ranged from 0.01 mg L—1 to 10 mg L—1. When pesticide concentration was greater than 1 mg l— 1 (which is below the LC50 [48 hours] determined for both species), A. aquaticus and G. fossarum responded to short-term exposure with elevated levels of R and/or lower levels of ETS activity. One hour exposure to concentrations of up to 10 mg L—1 showed an effect in both test species. Laboratory tests confirmed that G. fossarum is more sensitive to short-term pesticide exposure than A. aquaticus. The combination of these two methods provides a useful and effective tool for assessing the general condition of aquatic animals. It also enables to determine toxic effects on freshwater biota of specific or combined pollutants. ETS/R ratio may be used as a quick predictor of effects on organisms exposed to pesticides and other stress factors such as changes in temperature, light, salinity, oxygen concentration and food.

2021 ◽  
Author(s):  
Shin Woong Kim ◽  
Eva F Leifheit ◽  
Stefanie Maaß ◽  
Matthias C Rillig

Tire-wear particles (TWPs) are being released into the environment by wearing down during car driving, and are considered an important microplastic pollution source. The chemical additive leaching from these polymer-based materials and its potential effects are likely temporally dynamic, since larger amounts of potentially toxic compounds can gradually increase with contact time of plastic particles with surrounding media. In the present study, we conducted soil toxicity tests using the soil nematode Caenorhabditis elegans with different soil pre-incubation (30 and 75 days) and exposure (short-term exposure, 2 days; lifetime exposure, 10 days) times. Soil pre-incubation increased toxicity of TWPs, and the effective concentrations after the pre-incubation were much lower than environmentally relevant concentrations. The lifetime of C. elegans was reduced faster in the TWP treatment groups, and the effective concentration for lifetime exposure tests were 100- to 1,000-fold lower than those of short-term exposure tests. Water-extractable metal concentrations (Cr, Cu, Ni, Pb, and Zn) in the TWP-soils showed no correlation with nominal TWP concentrations or pre-incubation times, and the incorporated metals in the TWPs may be not the main reason of toxicity in this study. Our results show that toxic effects of TWPs can be time-dependent, both in terms of the microplastic particles themselves and their interactions in the soil matrix, but also because of susceptibility of target organisms depending on developmental stage. It is vital that future work consider these aspects, since otherwise effects of microplastics and TWPs could be underestimated.


Author(s):  
Shan-Han Huang ◽  
Ying-Chi Lin ◽  
Chun-Wei Tung

Non-genotoxic hepatocarcinogens (NGHCs) can only be confirmed by 2-year rodent studies. Toxicogenomics (TGx) approaches using gene expression profiles from short-term animal studies could enable early assessment of NGHCs. However, high variance in the modulation of the genes had been noted among exposure styles and datasets. Expanding from our previous strategy in identifying consensus biomarkers in multiple experiments, we aimed to identify time-invariant biomarkers for NGHCs in short-term exposure styles and validate their applicability to long-term exposure styles. In this study, nine time-invariant biomarkers, namely A2m, Akr7a3, Aqp7, Ca3, Cdc2a, Cdkn3, Cyp2c11, Ntf3, and Sds, were identified from four large-scale microarray datasets. Machine learning techniques were subsequently employed to assess the prediction performance of the biomarkers. The biomarker set along with the Random Forest models gave the highest median area under the receiver operating characteristic curve (AUC) of 0.824 and a low interquartile range (IQR) variance of 0.036 based on a leave-one-out cross-validation. The application of the models to the external validation datasets achieved high AUC values of greater than or equal to 0.857. Enrichment analysis of the biomarkers inferred the involvement of chronic inflammatory diseases such as liver cirrhosis, fibrosis, and hepatocellular carcinoma in NGHCs. The time-invariant biomarkers provided a robust alternative for NGHC prediction.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shin Woong Kim ◽  
Eva F. Leifheit ◽  
Stefanie Maaß ◽  
Matthias C. Rillig

Tire-wear particles (TWPs) are being released into the environment by wearing down during car driving, and are considered an important microplastic pollution source. The chemical additive leaching from these polymer-based materials and its potential effects are likely temporally dynamic, since amounts of potentially toxic compounds can gradually increase with contact time of plastic particles with surrounding media. In the present study, we conducted soil toxicity tests using the soil nematode Caenorhabditis elegans with different soil pre-incubation (30 and 75 days) and exposure (short-term exposure, 2 days; lifetime exposure, 10 days) times. Soil pre-incubation increased toxicity of TWPs, and the effective concentrations after the pre-incubation were much lower than environmentally relevant concentrations. The lifetime of C. elegans was reduced faster in the TWP treatment groups, and the effective concentration for lifetime exposure tests were 100- to 1,000-fold lower than those of short-term exposure tests. Water-extractable metal concentrations (Cr, Cu, Ni, Pb, and Zn) in the TWP-soils showed no correlation with nominal TWP concentrations or pre-incubation times, and the incorporated metals in the TWPs may be not the main reason of toxicity in this study. Our results show that toxic effects of TWPs can be time-dependent, both in terms of the microplastic particles themselves and their interactions in the soil matrix, but also because of susceptibility of target organisms depending on developmental stage. It is vital that future works consider these aspects, since otherwise effects of microplastics and TWPs could be underestimated.


1976 ◽  
Vol 36 (01) ◽  
pp. 221-229 ◽  
Author(s):  
Charles A. Schiffer ◽  
Caroline L. Whitaker ◽  
Morton Schmukler ◽  
Joseph Aisner ◽  
Steven L. Hilbert

SummaryAlthough dimethyl sulfoxide (DMSO) has been used extensively as a cryopreservative for platelets there are few studies dealing with the effect of DMSO on platelet function. Using techniques similar to those employed in platelet cryopreservation platelets were incubated with final concentrations of 2-10% DMSO at 25° C. After exposure to 5 and 10% DMSO platelets remained discoid and electron micrographs revealed no structural abnormalities. There was no significant change in platelet count. In terms of injury to platelet membranes, there was no increased availability of platelet factor-3 or leakage of nucleotides, 5 hydroxytryptamine (5HT) or glycosidases with final DMSO concentrations of 2.5, 5 and 10% DMSO. Thrombin stimulated nucleotide and 5HT release was reduced by 10% DMSO. Impairment of thrombin induced glycosidase release was noted at lower DMSO concentrations and was dose related. Similarly, aggregation to ADP was progressively impaired at DMSO concentrations from 1-5% and was dose related. After the platelets exposed to DMSO were washed, however, aggregation and release returned to control values. Platelet aggregation by epinephrine was also inhibited by DMSO and this could not be corrected by washing the platelets. DMSO-plasma solutions are hypertonic but only minimal increases in platelet volume (at 10% DMSO) could be detected. Shrinkage of platelets was seen with hypertonic solutions of sodium chloride or sucrose suggesting that the rapid transmembrane passage of DMSO prevented significant shifts of water. These studies demonstrate that there are minimal irreversible alterations in in vitro platelet function after short-term exposure to DMSO.


2016 ◽  
Vol 307 ◽  
pp. 137-144 ◽  
Author(s):  
Gaëtan Philippot ◽  
Fred Nyberg ◽  
Torsten Gordh ◽  
Anders Fredriksson ◽  
Henrik Viberg

Sign in / Sign up

Export Citation Format

Share Document