Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching

2017 ◽  
Vol 31 (9) ◽  
pp. 1277-1295 ◽  
Author(s):  
Anne Faust ◽  
Apoorva Kandakatla ◽  
Yolandi van der Merwe ◽  
Tanchen Ren ◽  
Luai Huleihel ◽  
...  

Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃. However, few studies have analyzed how extracellular matrix hydrogels influence primary central nervous system neuron survival and growth, and whether central nervous system and non-central nervous system extracellular matrix specificity is critical to neuronal responses. Urinary bladder extracellular matrix hydrogels increase both primary hippocampal neuron survival and neurite growth to similar or even greater extents, suggesting extracellular matrix from non-homologous tissue sources, such as urinary bladder matrix-extracellular matrix, may be a more economical and safer alternative to developing central nervous system extracellular matrices for central nervous system applications. Additionally, we show matrix-bound vesicles derived from urinary bladder extracellular matrix are endocytosed by hippocampal neurons and positively regulate primary hippocampal neuron neurite growth. Matrix-bound vesicles carry protein and RNA cargos, including noncoding RNAs and miRNAs that map to the human genome and are known to regulate cellular processes. Thus, urinary bladder matrix-bound vesicles provide natural and transfectable cargoes which offer new experimental tools and therapeutic applications to study and treat central nervous system neuron injury.

1985 ◽  
Vol 55 ◽  
Author(s):  
F. Terry Hambrecht

ABSTRACTNeural prostheses which are commercially available include cochlear implants for treating certain forms of deafness and urinary bladder evacuation prostheses for individuals with spinal cord disorders. In the future we can anticipate improvements in bioelectrodes and biomaterials which should permit more sophisticated devices such as visual prostheses for the blind and auditory prostheses for the deaf based on microstimulation of the central nervous system.


1988 ◽  
Vol 107 (6) ◽  
pp. 2281-2291 ◽  
Author(s):  
P A Paganetti ◽  
P Caroni ◽  
M E Schwab

Differentiated oligodendrocytes and central nervous system (CNS) myelin are nonpermissive substrates for neurite growth and for cell attachment and spreading. This property is due to the presence of membrane-bound inhibitory proteins of 35 and 250 kD and is specifically neutralized by monoclonal antibody IN-1 (Caroni, P., and M. E. Schwab. 1988. Neuron. 1:85-96). Using rat optic nerve explants, CNS frozen sections, cultured oligodendrocytes or CNS myelin, we show here that highly invasive CNS tumor line (C6 glioblastoma) was not inhibited by these myelin-associated inhibitory components. Lack of inhibition was due to a specific mechanism as the metalloenzyme blocker 1,10-phenanthroline and two synthetic dipeptides containing metalloprotease-blocking sequences (gly-phe, tyr-tyr) specifically impaired C6 cell spreading on CNS myelin. In the presence of these inhibitors, C6 cells were affected by the IN-1-sensitive inhibitors in the same manner as control cells, e.g., 3T3 fibroblasts or B16 melanomas. Specific blockers of the serine, cysteine, and aspartyl protease classes had no effect. C6 cell spreading on inhibitor-free substrates such as CNS gray matter, peripheral nervous system myelin, glass, or poly-D-lysine was not sensitive to 1,10-phenanthroline. The nonpermissive substrate properties of CNS myelin were strongly reduced by incubation with a plasma membrane fraction prepared from C6 cells. This reduction was sensitive to the same inhibitors of metalloproteases. In our in vitro model for CNS white matter invasion, cell infiltration of optic nerve explants, which occurred with C6 cells but not with 3T3 fibroblasts or B16 melanomas, was impaired by the presence of the metalloprotease blockers. These results suggest that C6 cell infiltrative behavior in CNS white matter in vitro occurs by means of a metalloproteolytic activity, which probably acts on the myelin-associated inhibitory substrates.


1996 ◽  
Vol 109 (7) ◽  
pp. 1749-1757 ◽  
Author(s):  
N. Soussi-Yanicostas ◽  
J.P. Hardelin ◽  
M.M. Arroyo-Jimenez ◽  
O. Ardouin ◽  
R. Legouis ◽  
...  

The KAL gene is responsible for the X-chromosome linked form of Kallmann's syndrome in humans. Upon transfection of CHO cells with a human KAL cDNA, the corresponding encoded protein, KALc, was produced. This protein is N-glycosylated, secreted in the cell culture medium, and is localized at the cell surface. Several lines of evidence indicate that heparan-sulfate chains of proteoglycan(s) are involved in the binding of KALc to the cell membrane. Polyclonal and monoclonal antibodies to the purified KALc were generated. They allowed us to detect and characterize the protein encoded by the KAL gene in the chicken central nervous system at late stages of embryonic development. This protein is synthesized by definite neuronal cell populations including Purkinje cells in the cerebellum, mitral cells in the olfactory bulbs and several subpopulations in the optic tectum and the striatum. The protein, with an approximate molecular mass of 100 kDa, was named anosmin-1 in reference to the deficiency of the sense of smell which characterizes the human disease. Anosmin-1 is likely to be an extracellular matrix component. Since heparin treatment of cell membrane fractions from cerebellum and tectum resulted in the release of the protein, we suggest that one or several heparan-sulfate proteoglycans are involved in the binding of anosmin-1 to the membranes in vivo.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1301-1309 ◽  
Author(s):  
R. Tuttle ◽  
W.D. Matthew

Neurons can be categorized in terms of where their axons project: within the central nervous system, within the peripheral nervous system, or through both central and peripheral environments. Examples of these categories are cerebellar neurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons, respectively. When explants containing one type of neuron were placed between cryosections of neonatal or adult sciatic nerve and neonatal spinal cord, the neurites exhibited a strong preference for the substrates that they would normally encounter in vivo: cerebellar neurites generally extended only on spinal cord, sympathetic neurites on sciatic nerve, and DRG neurites on both. Neurite growth from DRG neurons has been shown to be stimulated by neurotrophins. To determine whether neurotrophins might also affect the substrate preferences of neurites, DRG were placed between cryosections of neonatal spinal cord and adult sciatic nerve and cultured for 36 to 48 hours in the presence of various neurotrophins. While DRG cultured in NGF-containing media exhibited neurite growth over both spinal cord and sciatic nerve substrates, in the absence of neurotrophins DRG neurites were found almost exclusively on the CNS cryosection. To determine whether these neurotrophin-dependent neurite patterns resulted from the selective survival of subpopulations of DRG neurons with distinct neurite growth characteristics, a type of rescue experiment was performed: DRG cultured in neurotrophin-free medium were fed with NGF-containing medium after 36 hours in vitro and neurite growth examined 24 hours later; most DRG exhibited extensive neurite growth on both peripheral and central nervous system substrates.(ABSTRACT TRUNCATED AT 250 WORDS)


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Christian Macks ◽  
Jeoung Soo Lee

AbstractNeuronal axons damaged by traumatic injury are unable to spontaneously regenerate in the mammalian adult central nervous system (CNS), causing permanent motor, sensory, and cognitive deficits. Regenerative failure in the adult CNS results from a complex pathology presenting multiple barriers, both the presence of growth inhibitors in the extrinsic microenvironment and intrinsic deficiencies in neuronal biochemistry, to axonal regeneration and functional recovery. There are many strategies for axonal regeneration after CNS injury including antagonism of growth-inhibitory molecules and their receptors, manipulation of cyclic nucleotide levels, and delivery of growth-promoting stimuli through cell transplantation and neurotrophic factor delivery. While all of these approaches have achieved varying degrees of improvement in plasticity, regeneration, and function, there is no clinically effective therapy for CNS injury. RNA interference technology offers strategies for improving regeneration by overcoming the aspects of the injured CNS environment that inhibit neurite growth. This occurs through the knockdown of growth-inhibitory molecules and their receptors. In this review, we discuss the current state of RNAi strategies for the treatment of CNS injury based on non-viral vector mediated delivery.


Sign in / Sign up

Export Citation Format

Share Document