Response Surface Optimization in Discharge Printing of Denim Using Potassium Permanganate as Oxidative Agent

2017 ◽  
Vol 35 (3) ◽  
pp. 204-214 ◽  
Author(s):  
Amna Siddique ◽  
Tanveer Hussain ◽  
Waseem Ibrahim ◽  
Zulfiqar Ali Raza ◽  
Sharjeel Abid ◽  
...  

The present study was carried out to optimize discharge printing process for fashionable denim garments. Response surface methodology, involving a central composite design with three key factors, namely, potassium permanganate (KMnO4) concentration, pH of the printing paste, and reaction time, was successfully employed. The objective of this work was to develop a cost-effective, value-added process for denim fabric, where losses in tensile and tear strengths were to be minimized, while whiteness effect of discharge was to be maximized. The optimum conditions for discharge printing with potassium permanganate were found to be pH 6, KMnO4 concentration of 42 g/kg, and treatment time of 15 min. The validity of experimental values was found to be in good agreement with optimized combination of three variables.

2001 ◽  
Vol 8 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Lars A. Fredriksson ◽  
Uwe Schramm

Objective of the design process are cost effective designs that meet certain expectations with respect to functionality and appearance. Designs are created in an iterative process where analyses of the structural behavior lead to changes in the design. The use of optimization technology makes design changes to be driven directly by analysis results. The application of optimization allows an efficient search for the right combination of design variables for a certain design. Additional use of stochastic methods in order to analyze the design from a statistical standpoint adds robustness to the design and prevents unpleasant surprises in later physical testing.This paper discusses methodology to optimize structures that undergo impact loading. Objective and constraints are transient dynamic responses. The optimization problem is solved using a sequential response surface method. An explicit finite element code is used to solve the transient dynamic problem. The optimization is not performed on results from single simulations but on statistical results from a stochastic analysis. The stochastic analysis is driven using a Monte Carlo method. Commercial software is used for the implementation of the methodology.The results from the study indicate that a combination of optimization and stochastic analysis can add safety margins to a design with respect to robustness against physical errors in the design itself and against changes in load levels and load cases. However, this initial study must be followed up by more in-depth investigations to fully understand the benefits of combined optimization-stochastic analysis.


Author(s):  
K. Boujounoui ◽  
A. Abidi ◽  
A. Baçaoui ◽  
K. El Amari ◽  
A. Yaacoubi

SYNOPSIS Response surface methodology (RSM), central composite design (CCD), and desirability functions were used for modelling and optimization of the operating factors in chlorite and talc (collectively termed 'mica') flotation. The influence of pulp pH, cyanide (NaCN) consumption, and particle size was studied with the aim of optimizing ssilicate flotation while minimizing recoveries of galena, chalcopyrite, and sphalerite. Flotation tests were carried out on a representative sample of a complex sulphide ore from Draa Sfar mine (Morocco). The model predictions for the flotation of each of the minerals concerned were found to be in good agreement with experimental values, with R2 values of 0.91, 0.98, 0.99, and 0.90 for mica, galena, chalcopyrite, and sphalerite recoveries, respectively. RSM combined with desirability functions and CCD was successfully applied for the modelling of mica flotation, considering simultaneously the four flotation responses to achieve the maximum recovery of mica and minimal loss of Pb, Cu, and Zn to the flotation concentrate. Keywords: chlorite, talc, flotation, response surface methodology, central composite design, optimization.


2020 ◽  
Vol 15 (3) ◽  
pp. 632-639
Author(s):  
Padmaja Megham ◽  
R Bhavani

The paper emphasizes the removal ofChromium from tanning industryeffluent using adsorption as a cost effective option. The essential source of contamination identified from variable amounts of liquid discharges was Chromium (Cr+6). A column study was carried out using Shrimp shell waste (SSW) as an adsorbent in the removal of Cr+6 ion from synthetic solutions. Operational factors such as the size of adsorbent, bed depthand compared their adsorption capacities thereof. For a given size, the adsorption capacity increased by a reduction in the amount of Chromium. TheCr+6removal based on adsorbent size was in the order: 150 microns> 300 microns> 600 microns.The experimental data was optimized and modelled using Response Surface method, and a 23 factorial Central composite design (CCD) was applied, and the data was analyzed for ANOVA. A P-Value<0.005 indicated that the probability of the experimental results was significant.


2014 ◽  
Vol 3 (4) ◽  
pp. 21-33
Author(s):  
M.A. Waheed ◽  
O.D. Samuel ◽  
B.O. Bolaji ◽  
O.U. Dairo

The present work deals with the production of biodiesel from Nigerian restaurant waste cooking oil (NRWCO) and the optimization of the parameters that influences the alkaline transesterification of NRWCO into biodiesel using response surface methodology. The optimization parameters like oil: oil/methanol molar ratio, catalyst amount and reaction time were done using Design Expert 6.06 software. It was found that the maximum yield of biodiesel was obtained in 79.8 min for 1: 5.9, oil: methanol ratio, 1.2 wt. % KOH amount. A total of 20 experiments using Central Composite Design were carried out. The R2, adjusted R2 and predicted R2 values were 0.982, 0.9657 and 0.9088 respectively show that the experimental values are in good agreement with the predicted values. The properties of biodiesel at the optimized parameters, thus, produced confirm to the ASTM, EN and BIS specifications, making it an ideal alternative fuel for diesel engine.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Sudesh S ◽  
Meenakshi M ◽  
Sheeja R.Y ◽  
Thanapalan Murugesan

In the present work, crab shell was used as the biosorbent to remove copper from aqueous solution. Batch experiments were performed at different initial copper concentration of copper solutions (1-40 g/l), initial pH (2-9), temperature (20-400°C), and biosorbent dosages (2-10 g/l). The maximum removal of copper using crab shell occurred at a pH of 3 and at a temperature of 400°C using an optimum biosorbent dosage of 5 g/l. A mathematical model was proposed to identify the effects of the individual interactions of these variables on the biosorption of copper. The results have been modeled using response surface methodology using a Box-Behnken design. The response surface method was developed using three levels (-1, 0, +1) with the above mentioned four factors. The second order quadratic regression model fitted the experimental data with Prob > F to be < 0.0001. The experimental values were found to be in good agreement with the predicted values, with a satisfactory correlation coefficient of R2 = 0.9999.


2021 ◽  
Vol 13 (1) ◽  
pp. 61-68
Author(s):  
A.K. Varma ◽  
A. Chouhan ◽  
R. Shankar ◽  
P. Mondal ◽  
A.K. Rathore ◽  
...  

In the present study, the electrocoagulation process using iron electrodes was used to treat synthetic water containing lead and copper. Box-Behnken design of response surface methodology was applied to optimize the process variables namely initial pH, current density and treatment time along with operating cost. At optimum conditions (initial pH: 5, current density: 50 A/m2, treatment time: 40 min), the model predicted value for removal of lead and copper was found as 102.81% and 99.75%, respectively with an operating cost of 0.481 USD/m3. Whereas, the actual or experimental values of lead and copper removal were found as 99.98 % and 99.88 % as well as operating cost of 0.476 USD/m3, which signifies a good closeness between the model predicted values and actual values. The concentration of lead and copper in treated water was found below the permissible limits as per CPCB norms for industrial discharge.


Author(s):  
Sarver Ahmad Rather ◽  
Peerzada Rashid Hussain ◽  
Prashant Suradkar ◽  
Nazir Ahmad Mir

The effect of solvent concentration (20–80%), solvent to sample ratio(10:1–30:1), extraction time (10–30 min) and extraction temperature (20-100oC) on total phenolic content (TPC) in quince fruit was investigated for the first time using response surface methodology (RSM). Experiments were designed according to Central Composite Rotatable Design (CCRD) with these four factors, including central and axial points. A second-order polynomial Model satisfactorily fitted the experimental data with the R2 values of 0.89 for the response implying a good agreement between the predicted and experimental values. The optimal conditions of optimized response were solvent conc. of 60%, solvent/sample ratio of 16:1, extraction time of 20 min. and temperature of 65oC. Based on these optimised conditions, our model predicted TPC of 291.8 mg GAE/100g which was in the close agreement with experimental value of 285.2 mg GAE/100g for TPC with %CV of 2.2%.


2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


Sign in / Sign up

Export Citation Format

Share Document