The study of spring-back in wipe-bending processes for perforated components

Author(s):  
M A Farsi ◽  
B Arezoo ◽  
V Alizadeh ◽  
S Mirzaee

Bending is one of the processes frequently used during manufacturing of sheet-metal components. Spring-back in bending operations is an important issue when producing precision parts. This issue becomes even more important when the component has any kind of hole on the bending surface. Such components are the focus of study in this paper. Many parameters affect spring-back in the bending process; in the present work, perforated components with an oblong cut are selected, and the influence of cut size, die radius, clearance, and component material on the value of the spring-back in a wipe-bending process are studied. Four different hole sizes, three die radii and clearance, and two different steel materials (high-strength low-alloy steel and low-carbon steel) are used in experiments and finite-element simulations. Results show these parameters have effect on the amount of spring-back in the wipe-bending process.

2018 ◽  
Vol 27 (11) ◽  
pp. 5788-5793
Author(s):  
Yindong Shi ◽  
Lina Wang ◽  
Yulong Zhang ◽  
Hailong Xie ◽  
Yajun Zhao

2006 ◽  
Vol 54 (3) ◽  
pp. 841-849 ◽  
Author(s):  
Dieter Isheim ◽  
Michael S. Gagliano ◽  
Morris E. Fine ◽  
David N. Seidman

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3781
Author(s):  
Zhongping He ◽  
Huachu Liu ◽  
Zhenyu Zhu ◽  
Weisen Zheng ◽  
Yanlin He ◽  
...  

Transformation Induced Plasticity (TRIP) steels with silicon–manganese (Si–Mn) as the main element have attracted a lot of attention and great interest from steel companies due to their low price, high strength, and high plasticity. Retained austenite is of primary importance as the source of high strength and high plasticity in Si–Mn TRIP steels. In this work, the cold rolled sheets of Si–Mn low carbon steel were treated with TRIP and Dual Phase (DP) treatment respectively. Then, the microstructure and composition of the Si–Mn low carbon steel were observed and tested. The static tensile test of TRIP steel and DP steel was carried out by a CMT5305 electronic universal testing machine. The self-built true stress–strain curve model of TRIP steel was verified. The simulation results were in good agreement with the experimental results. In addition, the phase transformation energy of retained austenite and the work borne by austenite in the sample during static stretching were calculated. The work done by austenite was 14.5 J, which was negligible compared with the total work of 217.8 J. The phase transformation energy absorption of retained austenite in the sample was 9.12 J. The role of retained austenite in TRIP steel is the absorption of excess energy at the key place where the fracture will occur, thereby increasing the elongation, so that the ferrite and bainite in the TRIP steel can absorb energy for a longer time and withstand more energy.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 747 ◽  
Author(s):  
Farnoosh Forouzan ◽  
M. Guitar ◽  
Esa Vuorinen ◽  
Frank Mücklich

To improve the weld zone properties of Advanced High Strength Steel (AHSS), quenching and partitioning (Q&P) has been used immediately after laser welding of a low-carbon steel. However, the mechanical properties can be affected for several reasons: (i) The carbon content and amount of retained austenite, bainite, and fresh martensite; (ii) Precipitate size and distribution; (iii) Grain size. In this work, carbon movements during the partitioning stage and prediction of Ti (C, N), and MoC precipitation at different partitioning temperatures have been simulated by using Thermocalc, Dictra, and TC-PRISMA. Verification and comparison of the experimental results were performed by optical microscopy, X-ray diffraction (XRD), Scanning Electron Microscop (SEM), and Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Scanning Diffraction (EBSD) analysis were used to investigate the effect of martensitic/bainitic packet size. Results show that the increase in the number density of small precipitates in the sample partitioned at 640 °C compensates for the increase in crystallographic packets size. The strength and ductility values are kept at a high level, but the impact toughness will decrease considerably.


Sign in / Sign up

Export Citation Format

Share Document