scholarly journals Quantitative Description of External Force Induced Phase Transformation in Silicon–Manganese (Si–Mn) Transformation Induced Plasticity (TRIP) Steels

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3781
Author(s):  
Zhongping He ◽  
Huachu Liu ◽  
Zhenyu Zhu ◽  
Weisen Zheng ◽  
Yanlin He ◽  
...  

Transformation Induced Plasticity (TRIP) steels with silicon–manganese (Si–Mn) as the main element have attracted a lot of attention and great interest from steel companies due to their low price, high strength, and high plasticity. Retained austenite is of primary importance as the source of high strength and high plasticity in Si–Mn TRIP steels. In this work, the cold rolled sheets of Si–Mn low carbon steel were treated with TRIP and Dual Phase (DP) treatment respectively. Then, the microstructure and composition of the Si–Mn low carbon steel were observed and tested. The static tensile test of TRIP steel and DP steel was carried out by a CMT5305 electronic universal testing machine. The self-built true stress–strain curve model of TRIP steel was verified. The simulation results were in good agreement with the experimental results. In addition, the phase transformation energy of retained austenite and the work borne by austenite in the sample during static stretching were calculated. The work done by austenite was 14.5 J, which was negligible compared with the total work of 217.8 J. The phase transformation energy absorption of retained austenite in the sample was 9.12 J. The role of retained austenite in TRIP steel is the absorption of excess energy at the key place where the fracture will occur, thereby increasing the elongation, so that the ferrite and bainite in the TRIP steel can absorb energy for a longer time and withstand more energy.

2014 ◽  
Vol 1082 ◽  
pp. 202-207 ◽  
Author(s):  
Shu Yan ◽  
Xiang Hua Liu

A low carbon steel was treated by quenching and partitioning (Q&P) process, and a detailed characterization of the microstructural evolution and testing of mechanical properties were carried out. The resulted mechanical properties indicate that with the partitioning time increasing, the tensile strength decreases rapidly first and then remains stable, and the total elongation increases first then decreases. The investigated steel subjected to Q&P process exhibits excellent products of strength and elongation (17.8-20.6 GPa•%). The microstructural evolution of martensite matrix during the partitioning step was observed, and the morphology and content of retained austenite were characterized. The working hardening behavior of the samples was analyzed, and the retained austenite with higher carbon content contributes to the uniform elongation more effectively.


2018 ◽  
Vol 27 (11) ◽  
pp. 5788-5793
Author(s):  
Yindong Shi ◽  
Lina Wang ◽  
Yulong Zhang ◽  
Hailong Xie ◽  
Yajun Zhao

2006 ◽  
Vol 54 (3) ◽  
pp. 841-849 ◽  
Author(s):  
Dieter Isheim ◽  
Michael S. Gagliano ◽  
Morris E. Fine ◽  
David N. Seidman

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 747 ◽  
Author(s):  
Farnoosh Forouzan ◽  
M. Guitar ◽  
Esa Vuorinen ◽  
Frank Mücklich

To improve the weld zone properties of Advanced High Strength Steel (AHSS), quenching and partitioning (Q&P) has been used immediately after laser welding of a low-carbon steel. However, the mechanical properties can be affected for several reasons: (i) The carbon content and amount of retained austenite, bainite, and fresh martensite; (ii) Precipitate size and distribution; (iii) Grain size. In this work, carbon movements during the partitioning stage and prediction of Ti (C, N), and MoC precipitation at different partitioning temperatures have been simulated by using Thermocalc, Dictra, and TC-PRISMA. Verification and comparison of the experimental results were performed by optical microscopy, X-ray diffraction (XRD), Scanning Electron Microscop (SEM), and Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Scanning Diffraction (EBSD) analysis were used to investigate the effect of martensitic/bainitic packet size. Results show that the increase in the number density of small precipitates in the sample partitioned at 640 °C compensates for the increase in crystallographic packets size. The strength and ductility values are kept at a high level, but the impact toughness will decrease considerably.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Le Van Long ◽  
Dinh Van Hien ◽  
Nguyen Truong Thanh ◽  
Nguyen Chi Tho ◽  
Van Thom Do

The low carbon steel has good ductility that is favorable for forming process, but its low strength leads to limiting their application for forced structures. This paper studied improving strength of low-carbon steel via rolling deformation and dual-phase treatment. The results showed that the dual-phase treated steel had a combination of high strength and good ductility; its tensile ultimate strength reached 740 MPa with elongation at fracture of over 15%, while that of the cold-rolled steel only reached 700 MPa with elongation at fracture of under 3%. Based on the obtained results, relationships between mechanical properties and dual-phase processing parameters were established to help users choose suitable-processing parameters according to requirements of products.


Sign in / Sign up

Export Citation Format

Share Document