Micro-drilling of Mg-based MMCs reinforced with SiO2 nanoparticles: An experimental approach

Author(s):  
Fuzhong Sun ◽  
Dehong Huo ◽  
Guoyu Fu ◽  
Xiangyu Teng ◽  
Sathish Kannan ◽  
...  

Mg-based metal matrix composites reinforced with nanoparticles are promising biomaterials due to their biocompatibility and high hardness and because they are local and systemic toxicity free. Nano-metal matrix composites are considered to be hard-to-machine materials due to the high strength and high abrasiveness of the reinforcing nanoparticles. In this article, the micro-drilling mechanisms of Mg-based metal matrix composites reinforced with different volume fraction of SiO2 nanoparticles (0.5, 1.0, 1.5, 2.0 vol.%) were investigated experimentally. Results obtained were also compared with pure Mg. First, it was found that the volume fraction and drilling parameters played an important role in the chip formation mechanism. Second, the influence of drilling parameters on hole surface morphology and cutting force were studied, in which both the rotation speed and feedrate affected the surface morphology, and the main factor affecting cutting force was found to be the feedrate. Furthermore, the formation of burrs was investigated. The height of the burr could be reduced by using small feedrate and low rotation speed. Finally, the size effect of micro-drilling was studied. The variation of surface roughness and cutting force of pure Mg and Mg-based metal matrix composites had three changing trends with the uncut chip thickness. The minimum chip thickness of Mg/SiO2 metal matrix composites was determined to be 1.1 μm.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


Author(s):  
Ryan Hahnlen ◽  
Marcelo J. Dapino

Shape memory and superelastic NiTi are often utilized for their large strain recovery and actuation properties. The objective of this research is to utilize the stresses generated by pre-strained NiTi as it is heated in order to tailor the CTE of metal-matrix composites. The composites studied consist of an Al 3003-H18 matrix with embedded NiTi ribbons fabricated through an emerging rapid prototyping process called Ultrasonic Additive Manufacturing (UAM). The thermally-induced strain of the composites is characterized and results show that the two key parameters in adjusting the effective CTE are the NiTi volume fraction and prestrain of the embedded NiTi. From the observed behavior, a constitutive composite model is developed based constitutive SMA models and strain matching composite models. Additional composites were fabricated to characterize the NiTi-Al interface through EDS and DSC. These methods were used to investigate the possibility of metallurgical bonding between the ribbon and matrix and determine interface shear strength. Interface investigation indicates that mechanical coupling is accomplished primarily through friction and the shear strength of the interface is 7.28 MPa. Finally, using the developed model, a composite was designed and fabricated to achieve a near zero CTE. The model suggests that the finished composite will have a zero CTE at a temperature of 135°C.


Author(s):  
Zhichao Niu ◽  
Kai Cheng

The effects of cutting dynamics and the particles' size and density cannot be ignored in micro milling of metal matrix composites. This article presents the improved dynamic cutting force modelling for micro milling of metal matrix composites based on the previous analytical model. This comprehensive improved cutting force model, taking the influence of the tool run-out, actual chip thickness and resultant tool tip trajectory into account, is evaluated and validated through well-designed machining trials. A series of side milling experiments using straight flutes polycrystalline diamond end mills are carried out on the metal matrix composite workpiece under various cutting conditions. Subsequently, the measured cutting forces are compensated by a Kalman filter to achieve the accurate cutting forces. These are further compared with the predicted cutting forces to validate the proposed dynamic cutting force model. The experimental results indicate that the predicted and measured cutting forces in micro milling of metal matrix composites are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document