Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal–matrix composites at high rates of strain

1998 ◽  
Vol 46 (16) ◽  
pp. 5633-5646 ◽  
Author(s):  
Y. Li ◽  
K.T. Ramesh
Author(s):  
Christopher O. Huber ◽  
Sascha Kremmer ◽  
Heinz E. Pettermann

Computational predictions on the tribological behavior of metal matrix composites (MMCs) are carried out. The influence of particle volume fraction and clustering of particles is investigated at different length scales. Finite Element simulations are performed on unit cells utilizing approaches from the field of ‘continuum mechanics of materials’. Models are based on the work of Segurado et al. [1], who used homogeneous, randomly distributed inclusions in a matrix phase with 30% particle volume fraction. In addition, the present work introduces modified unit cells with 10% volume fraction, with both homogeneous random and clustered distribution (Fig. 1). These modifications are derived from the original cell by either randomly removing inclusions in the first case, or from a predefined area in the second case.


2007 ◽  
Vol 353-358 ◽  
pp. 1263-1266
Author(s):  
Yi Wu Yan ◽  
Lin Geng ◽  
Ai Bin Li ◽  
Guo Hua Fan

By incorporating the Taylor-based nonlocal theory of plasticity, the finite element method (FEM) is applied to investigate the effect of particle size on the deformation behavior of the metal matrix composites. In the simulation, the two-dimensional plane strain and random distribution multi-particles model are used. It is shown that, at a fixed particle volume fraction, there is a close relationship between the particle size and the deformation behavior of the composites. The yield strength and plastic work hardening rate of the composites increase with decreasing particle size. The predicted stress-strain behaviors of the composites are qualitative agreement with the experimental results.


2002 ◽  
Vol 124 (2) ◽  
pp. 167-173 ◽  
Author(s):  
D-M. Duan ◽  
N. Q. Wu ◽  
M. Zhao ◽  
W. S. Slaughter ◽  
Scott X. Mao

This paper deals with an analysis of the size effect on the flow strength of metal-matrix composites due to the presence of geometrically necessary dislocations. The work is based upon a cell model of uniaxial deformation. The deformation field is analyzed based on a requirement of the deformation compatibility along the interface between the particle and the matrix, which in turn is completed through introducing an array of geometrically necessary dislocations. The results of modelling show that the overall stress-strain relationship is dependent not only on the particle volume fraction but also on the particle size. It has been found that the material length scale in the strain gradient plasticity is dependent on the particle volume fraction, or in other words, on the relative ratio of the particle spacing to the particle size. The strain gradient is, besides the macro-strain and the particle volume fraction, inversely proportional to the particle size.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


Author(s):  
Ryan Hahnlen ◽  
Marcelo J. Dapino

Shape memory and superelastic NiTi are often utilized for their large strain recovery and actuation properties. The objective of this research is to utilize the stresses generated by pre-strained NiTi as it is heated in order to tailor the CTE of metal-matrix composites. The composites studied consist of an Al 3003-H18 matrix with embedded NiTi ribbons fabricated through an emerging rapid prototyping process called Ultrasonic Additive Manufacturing (UAM). The thermally-induced strain of the composites is characterized and results show that the two key parameters in adjusting the effective CTE are the NiTi volume fraction and prestrain of the embedded NiTi. From the observed behavior, a constitutive composite model is developed based constitutive SMA models and strain matching composite models. Additional composites were fabricated to characterize the NiTi-Al interface through EDS and DSC. These methods were used to investigate the possibility of metallurgical bonding between the ribbon and matrix and determine interface shear strength. Interface investigation indicates that mechanical coupling is accomplished primarily through friction and the shear strength of the interface is 7.28 MPa. Finally, using the developed model, a composite was designed and fabricated to achieve a near zero CTE. The model suggests that the finished composite will have a zero CTE at a temperature of 135°C.


2013 ◽  
Vol 390 ◽  
pp. 685-690
Author(s):  
Yuan Wang ◽  
Khellil Sefiane ◽  
Zhen Guo Wang

Evaporating meniscus of ethanol and ethanol-based nanofluids (0.01vol.%) in micro-channels were experimentally studied. Visualisation and thermographic results of the stationary meniscus confined in high-aspect-ratio rectangular micro-channels (hydraulic diameters are 571 μm, 727 μm and 1454 μm, channel cross sectional aspect ratio is 20, 20, 10 respectively) were obtained. It was found that interface evaporation rate increases with heat flux. The meniscus interface becomes deformed when the evaporation rate increases. The use of nanofluids largely enhances the interface stability even though the particle volume fraction is at a very low level. Besides, a stick-slip and back-jump behaviour of the nanofluids meniscus was captured during the transition from stable to deformed interface. Moreover, sink effect at the liquid-vapour interface was discussed based on the IR results.


Sign in / Sign up

Export Citation Format

Share Document