A two-stage inverse method for the evaluation of volume fraction distributions in 2D and 3D functionally graded materials

Author(s):  
M A Nematollahi ◽  
M R Hematiyan ◽  
M Farid

In this article, an inverse method is proposed to determine the volume fraction distributions in functionally graded materials (FGMs). By determining the space-dependent volume fractions of the FGM phases, the properties of the FGMs are characterized. The proposed method, which is based on a steady-state thermal test, is applied in two stages. In the first stage, the two- or three-dimensional material is considered piecewise homogenous and its properties are found by a simple inverse analysis. In the second stage, the unknown volume fraction distribution is considered as a continuous function with several unknown parameters. Estimated values of these unknown parameters are found using the results obtained in the first stage and by another inverse analysis. The obtained results show that the presented method is efficient in estimating the volume fraction distributions in FGMs.

1999 ◽  
Author(s):  
J. W. Gao ◽  
S. J. White ◽  
C. Y. Wang

Abstract A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on the interplay between the freezing front propagation and particle sedimentation. Experiments were performed in a rectangular ingot using pure substances as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured by bifurcated fiber optical probes working in the reflection mode. The effects of various processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results, and the validated computer code was used as a tool for efficient computational prototyping of an Al/SiC FGM.


2006 ◽  
Vol 74 (5) ◽  
pp. 861-874 ◽  
Author(s):  
Florin Bobaru

We present a numerical approach for material optimization of metal-ceramic functionally graded materials (FGMs) with temperature-dependent material properties. We solve the non-linear heterogeneous thermoelasticity equations in 2D under plane strain conditions and consider examples in which the material composition varies along the radial direction of a hollow cylinder under thermomechanical loading. A space of shape-preserving splines is used to search for the optimal volume fraction function which minimizes stresses or minimizes mass under stress constraints. The control points (design variables) that define the volume fraction spline function are independent of the grid used in the numerical solution of the thermoelastic problem. We introduce new temperature-dependent objective functions and constraints. The rule of mixture and the modified Mori-Tanaka with the fuzzy inference scheme are used to compute effective properties for the material mixtures. The different micromechanics models lead to optimal solutions that are similar qualitatively. To compute the temperature-dependent critical stresses for the mixture, we use, for lack of experimental data, the rule-of-mixture. When a scalar stress measure is minimized, we obtain optimal volume fraction functions that feature multiple graded regions alternating with non-graded layers, or even non-monotonic profiles. The dominant factor for the existence of such local minimizers is the non-linear dependence of the critical stresses of the ceramic component on temperature. These results show that, in certain cases, using power-law type functions to represent the material gradation in FGMs is too restrictive.


Author(s):  
Saeed Rouhi ◽  
Seyed H Alavi

In this paper, the elastic properties of functionally graded materials reinforced by single-walled carbon nanotubes are studied. Three different matrices, including steel-silicon, iron-alumina and alumina-zirconia are considered. Besides, the effects of nanotube length, radius and volume fraction on the Young’s modulus of functionally graded matrices reinforced by single-walled carbon nanotubes are investigated. It is observed that short nanotubes not only cannot increase the longitudinal elastic modulus of the matrices, but sometimes decrease their elastic modulus. Of the three selected matrices, steel-silicon matrix would have the most enhancement. Investigation of the effect of nanotube volume fraction on the mechanical properties of nanocomposites shows that increasing the volume fraction of long single-walled carbon nanotube results in increasing the elastic modulus of the nanocomposites.


2007 ◽  
Vol 353-358 ◽  
pp. 1098-1101 ◽  
Author(s):  
Hong Jun Yu ◽  
Li Cheng Guo ◽  
Lin Zhi Wu

Functionally graded materials (FGMs) with continuous varying properties have absorbed great attention for the purpose of eliminating the mismatch of material properties which may result in cracking. In this paper, three-dimensional finite element method (3D FEM) based on nonhomogeneous elements is used to study the fracture behaviors of a 3D FGM plate. Since real material properties at Gaussian integration points are adopted during forming the element stiffness matrix, the nonhomogeneous material properties can be applied in each element. Moreover, 20-node singular elements are used around the crack front to deal with the singularity of stress fields at the crack front. By this way, the stress intensity factors (SIFs) can be calculated with high efficiency and accuracy. Therefore, compared with the general FEM using homogeneouos elements, the calculating efficiency and accuracy can be increased. Finally, parameter analysis is conducted. It is found that the material nonhomogeneity constant and the crack parameter have significant influences on the SIFs.


Author(s):  
M. Rahaeifard ◽  
M. H. Kahrobaiyan ◽  
S. A. Moeini ◽  
M. T. Ahmadian ◽  
M. Hoviattalab

In this paper, two lowest resonant frequencies and sensitivities of an AFM V-Shaped microcantilever made of functionally graded materials are studied. The beam is modeled by Euler-Bernoulli beam theory in which rotary inertia and shear deformation is neglected. It is assumed that the beam is made of a mixture of metal and ceramic with properties varying through the thickness of the beam. This variation is function of volume fraction of beam material constituents. The interaction between AFM tip and surface is modeled by two linear springs which expresses the normal and lateral contact stiffness. A relationship is developed to evaluate the sensitivity of FGM micro cantilever beam. Effect of volume fraction of materials and geometric parameters on resonant frequencies and sensitivities is studied. Results show that natural frequencies and sensitivities are significantly affected by volume fraction of material constituents and geometric parameters. Using these results, optimum geometric parameters and mass distributions of material constituents can be chosen so that high resolution images could be obtained.


Sign in / Sign up

Export Citation Format

Share Document