Design of an Ackermann-type steering mechanism

Author(s):  
Jing-Shan Zhao ◽  
Xiang Liu ◽  
Zhi-Jing Feng ◽  
Jian S Dai

This article focuses on the synthesis of a steering mechanism that exactly meets the requirements of Ackermann steering geometry. It starts from reviewing of the four-bar linkage, then discusses the number of points that a common four-bar linkage could precisely trace at most. After pointing out the limits of a four-bar steering mechanism, this article investigates the turning geometry for steering wheels and proposes a steering mechanism with incomplete noncircular gears for vehicle by transforming the Ackermann criteria into the mechanism synthesis. The pitch curves, addendum curves, dedendum curves, tooth profiles and transition curves of the noncircular gears are formulated and designed. Kinematic simulations are executed to demonstrate the target of design.

2020 ◽  
Vol 22 (1) ◽  
pp. 93-104
Author(s):  
V. Chitti Babu ◽  
P. Govinda Rao ◽  
K. Santa Rao ◽  
B. Murali Krishna

AbstractThis article focuses on the synthesis of a steering mechanism that exactly meets the requirements of steering geometry. It starts from reviewing the four-bar linkage, then discusses the number of points that a common four-bar linkage could precisely trace at most. After pointing out the limits of a four-bar steering mechanism, this article investigates the turning geometry for steering wheels and proposes a steering mechanism using servo motors and ARDUINO board. The pitch curves, addendum curves, dedendum curves, tooth pro les and transition curves of the noncircular gears are formulated and designed. Finally, kinematic simulations are executed to demonstrate the target of design


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
L. Yuan ◽  
J. Rastegar ◽  
J. Zhang

In a recent study, the authors presented a systematic method for the modification of the output motion of linkage mechanisms with closed-loop chains using cams positioned at one or more joints of the mechanism. In this paper, the method is applied to the design of a linkage mechanism with an integrated cam mechanism to eliminate high harmonic component of the output motion. The mechanism may be synthesized using any existing linkage mechanism synthesis technique. In the present study, a cam mechanism is synthesized to eliminate all high harmonic components of the output link motion of a four-bar linkage mechanism to illustrate the potentials of the present approach. The mechanism is then constructed and successfully tested. With the present method, selected ranges of high harmonic motions generated due to the mechanisms kinematics nonlinearity can be eliminated by integrating appropriately designed cams, thereby significantly reducing the potential vibrational excitation that the mechanism can impart on the overall system, including its own structure. Such systems should therefore be capable of operating at higher speeds and with increased precision.


Author(s):  
Shrinath Deshpande ◽  
Anurag Purwar

The past forty years of research in mechanism synthesis has witnessed an unprecedented volume of work in formulating and solving planar four-bar linkage synthesis problems. However, finding practical and useful mechanisms for the motion synthesis problem has proven to be elusive, as a large majority of mechanisms turn out to be defective with respect to their assembly modes. Most methods formulate the problem as a discrete precision position problem, which inherently ignores the continuity information in the input, resulting in linkages with branch-, circuit- and order-defects. In this paper, we bring together diverse fields of pattern recognition, machine learning, artificial neural network, and computational kinematics to present a novel approach that solves this problem both efficiently and effectively. At the heart of this approach lies an objective function that compares the motion as a whole thereby capturing designer’s intent. In contrast to widely used structural error or loop-closure equation based error functions which convolute the optimization by considering shape, size, position, and orientation simultaneously, this objective function computes motion difference in a form, which is invariant to similarity transformations. We employ auto-encoder neural networks to create a compact and clustered database of invariant motions of known linkages. The query is raised in the database for nearest neighbors, which are either solutions or good initial conditions for fast local optimization techniques. In spite of highly non-linear parameters space, our approach discovers a wide pool of defect-free solutions very quickly. We show that by employing proven machine learning techniques, this work could have far-reaching consequences to creating a multitude of useful and creative conceptual design solutions for mechanism synthesis problems, which go beyond planar four-bar linkages.


Author(s):  
Mohammad-Amin Rajaie ◽  
Amir Khajepour ◽  
Alireza Pazooki ◽  
Amir Soltani

Most current urban vehicles are scaled-down versions of standard passenger cars. This imposes serious limitations on the safety, comfort, efficiency, dynamic performance and, hence, customer acceptance of the vehicle. This paper provides a unique design of an integrated corner module including an in-wheel suspension, an electrical in-wheel motor, a friction brake, a steering system, and a camber mechanism, which can be used in any urban vehicle design without modification. For the first time, a dual four-bar linkage mechanism has been designed to generate a virtual kingpin axis and provide an active camber. This approach results in a highly compact design for the corner module that can be integrated into narrow vehicles. A full-size prototype of the proposed integrated corner module has been fabricated and tested to validate the new steering mechanism and the integrated corner module characteristics.


Author(s):  
J. Rastegar ◽  
L. Yuan

Abstract A systematic method is presented for kinematics synthesis of high-speed mechanisms with optimally integrated smart materials based actuators for the purpose of modifying the output link motion. As an example, the method is applied to a four-bar linkage mechanism that is synthesized for function generation to eliminate the high harmonic component of the output link motion. For mechanisms with rigid links, the high harmonic motions are generated due to the nonlinearity of the kinematics of their closed-loop chains. By eliminating the high harmonic component of the output motion, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds with increased precision. A numerical example is provided together with a discussion of the application of the method to other mechanism synthesis problems and some related topics of interest.


2000 ◽  
Vol 124 (1) ◽  
pp. 14-20 ◽  
Author(s):  
J. Rastegar ◽  
L. Yuan

A systematic method is presented for kinematics synthesis of high-speed mechanisms with optimally integrated smart materials based actuators for the purpose of modifying the output link motion. As an example, the method is applied to a four-bar linkage mechanism that is synthesized for function generation to eliminate the high harmonic component of the output link motion. For mechanisms with rigid links, the high harmonic motions are generated due to the nonlinearity of the kinematics of their closed-loop chains. By eliminating the high harmonic component of the output motion, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds and with greater precision. A numerical example is provided together with a discussion of the application of the method to other mechanism synthesis problems and some related topics of interest.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Changming Yang ◽  
Xiaoping Du

Quality characteristics (QCs) are important product performance variables that determine customer satisfaction. Their expected values are optimized and their standard deviations are minimized during robust design (RD). Most of RD methodologies consider only a single QC, but a product is often judged by multiple QCs. It is a challenging task to handle dependent and oftentimes conflicting QCs. This work proposes a new robustness modeling measure that uses the maximum quality loss among multiple QCs for problems where the quality loss is the same no matter which QCs or how many QCs are defective. This treatment makes it easy to model RD with multivariate QCs as a single objective optimization problem and also account for the dependence between QCs. The new method is then applied to problems where bivariate QCs are involved. A numerical method for RD with bivariate QCs is developed based on the first order second moment (FOSM) method. The method is applied to the mechanism synthesis of a four-bar linkage and a piston engine design problem.


1986 ◽  
Vol 108 (1) ◽  
pp. 10-14 ◽  
Author(s):  
M. Claudio ◽  
S. Kramer

The rack and gear mechanism is synthesized for generating four prescribed path points with input coordination. This mechanism has a number of advantages over the well-known four-bar linkage. First, the transmission angle is always at its optimum value of 90 deg since the rack is always tangent to the gear. Second, with both translation and rotation of the rack occurring, multiple outputs are available. Other advantages include the generation of monotonic functions for a wide range of motion and nonmonotonic functions for the full range of motion as well as nonlinear amplified motions. In this work, the mechanism is made to satisfy a number of practical design requirements such as having a completely rotatable input crank, elimination of the branching defect and others. The method of solution developed in this work employs the Burmester Four-Precision-Point Algorithm with additional relations utilizing the Complex Number Method of Mechanism Synthesis. The solution is programmed on the DEC/PDP 11/70 and is available to interested readers.


Sign in / Sign up

Export Citation Format

Share Document