Optimal power-assistance system for a new pedelec model

Author(s):  
Massimo Cardone ◽  
Salvatore Strano ◽  
Mario Terzo

This paper presents an activity concerning the modeling and the control of an innovative power-assisted electric bicycle. The proposed control method is based on a torque control designed via an optimal approach to achieve multi-objective performances regarding the external disturbance input, control signal magnitude, and velocity tracking error. The performance of the methodology has been evaluated applying the proposed control to a new pedelec (pedal electric cycle) model characterized by the measurement of the total torque (rider torque and electric motor one) employed as a feedback for the control. To this aim, a mathematical model of the bicycle, equipped with the electric motor, has been developed. Simulations have been performed in order to evaluate the tracking capability and the disturbance rejection. The performances have been compared with the ones referred to a traditional assistance approach, and the results demonstrate that the proposed approach provides improvements in terms of riding comfort and energy employment.

2011 ◽  
Vol 58-60 ◽  
pp. 2392-2395
Author(s):  
Tong Ying Guo ◽  
Jie Jia Li ◽  
Hai Chen Wang

In this paper, in order to achieve high-precision trajectory control of grinding robot, the method of computed torque control is proposed based on PD feedback, a single-joint robot experimental platform was built, position and velocity tracking experiment is carried out with empty Load and load. Experimental results show that the method of computed torque based on PD feedback control has the characteristic of quick response speed and small position tracking error.


2021 ◽  
Vol 17 (3) ◽  
pp. 22-28
Author(s):  
Maryam Sadeq Ahmed ◽  
Ali Hussien M Mary ◽  
Hisham Hassan Jasim

This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem.  The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Tong Zhao ◽  
Guo-ping Lu ◽  
Yun-li Hao ◽  
Yi-min Li

Based on the niche characteristics, a hybrid adaptive fuzzy control method with the function of continuous supervisory control is proposed in this paper. Considering the close degree of Niche as the consequent of adaptive T-S fuzzy control system, the hybrid control law is designed by tracking, continuous supervisory, and adaptive compensation. Adaptive compensator is used in the controller to compensate the approximation error of fuzzy logic system and the effect of the external disturbance. The adaptive law of consequent parameters, which is achieved in this paper, embodies system adaptability as biological individual. It is proved that all signals in the closed-loop system are bounded and tracking error converges to zero by Lyapunov stability theory. The effectiveness of the approach is demonstrated by the simulation results.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Xiaogang Song ◽  
Yongjie Zhao ◽  
Chengwei Chen ◽  
Liang’an Zhang ◽  
Xinjian Lu

SUMMARY In this paper, an online self-gain tuning method of a PD computed torque control (CTC) is used for a 3UPS-PS parallel robot. The CTC is applied to the 3UPS-PS parallel robot based on the robot dynamic model which is established via a virtual work principle. The control system of the robot comprises a nonlinear feed-forward loop and a PD control feedback loop. To implement real-time online self-gain tuning, an adjustment method based on the genetic algorithm (GA) is proposed. Compared with the traditional CTC, the simulation results indicate that the control algorithm proposed in this study can not only enhance the anti-interference ability of the system but also improve the trajectory tracking speed and the accuracy of the 3UPS-PS parallel robot.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Romina Zarrabi Ekbatani ◽  
Ke Shao ◽  
Jasim Khawwaf ◽  
Hai Wang ◽  
Jinchuan Zheng ◽  
...  

The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection.


2019 ◽  
Vol 52 (9-10) ◽  
pp. 1344-1353 ◽  
Author(s):  
Gang Chen ◽  
Weigong Zhang ◽  
Xu Li ◽  
Bing Yu

To solve the shortcomings of existing control methods for an electromagnetic direct drive vehicle robot driver, including large speed tracking error and large mileage deviation, a new adaptive speed control method for the electromagnetic direct drive vehicle robot driver based on fuzzy logic is proposed in this paper. The electromagnetic direct drive vehicle robot driver adapts an electromagnetic linear motor as its drive mechanism. The control system structure is designed. The coordinated controller for multiple manipulators is presented. Moreover, an adaptive speed controller for the electromagnetic direct drive vehicle robot driver is proposed to achieve the accurate tracking of desired speed. Experiments are conducted using a Ford FOCUS car. Performances of the proposed method, proportional–integral–derivative, and fuzzy neural network are compared and analyzed. Experimental results demonstrate that the proposed control method can accurately track the target speed, and it can inhabit the change of speed caused by interference under different test conditions, and it has small mileage deviation, which can meet the requirements of national vehicle test standards.


Sign in / Sign up

Export Citation Format

Share Document