Aerodynamic performance of a small-scale tilt rotor: Numerical simulation and experiment in steady state

Author(s):  
Haitao Yang ◽  
Wei Xia ◽  
Kun Wang ◽  
Shuling Hu

The present work studies the aerodynamic performance of a small-scale rotor in tilting transition states through wind tunnel tests and numerical simulations. Firstly, the test platform for the rotor aerodynamics is built up, and the Computational Fluid Dynamics (CFD) model of flow field around the rotors is established based on the multiple reference frame method. Secondly, the effects of flow velocity, tilt angle and advance ratio on the aerodynamic performance of the rotor are investigated using both the numerical simulation and the wind tunnel test. It is found that for the Model 8038 rotor with maximum effeciency of 0.567 at advance ratio of 0.43, the rotor thrust coefficient increases with the increase of the Reynolds number. At Reynolds number of 410 thousand to 820 thousand, the thrust coefficient increases slightly with the increase of the rotating speed. The results also show that the thrust coefficient decreases with the increase of the advance ratio. With high-speed airflow and relatively low-speed rotation, “windmill” phenomenon is found in the experiment. The tilting of the rotor from level flight to hovering increases the thrust coefficient. Highly dependency of the tilt angle on the thrust coefficients at given advance ratios is found in the wind tunnel tests.

Author(s):  
Mosfequr Rahman ◽  
Khandakar N. Morshed ◽  
Ahsan Mian

Considerable improvements in the aerodynamic performance of a vertical axis wind turbine (VAWT) can be achieved by integrating computational fluid dynamics (CFD) simulation and wind tunnel investigation in their design improvement. With the growing demand for energy worldwide, conventional sources are becoming more scarce and expensive. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. Industry experts predict that, with proper development, wind energy could provide 20% of the nation’s energy needs. Vertical axis wind turbines (VAWTs) may be as efficient and practical as, and simpler, and significantly cheaper to build and maintain than, horizontal axis wind turbines (HAWTs). They have other inherent advantages; for example, they always face the wind. VAWTs include both a drag-type configuration, such as the Savonius rotor, and a lift-type configuration, such as the Darrieus rotor. The Savonius wind turbine is the simplest. Its operation depends on the difference in drag force when the wind strikes either the convex or concave part of its semi-cylindrical blades. It is good at self-starting and works independently of wind direction. However, its efficiency is relatively lower than that of the lift-type VAWTs. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and to generate wind power on a small scale and its large starting torque makes it suitable for starting other types of wind turbines that have inferior starting characteristics. Recently, some generators with high torque at low rotational speed, suitable for small-scale wind turbines, have been developed, suggesting that Savonius rotors may yet be used to generate electric power. The main goal of this research work is to improve the aerodynamic performance of the three bladed vertical axis Savonius wind turbine. Based on this goal, the objective of this project is to study the performance characteristics of the Savonius wind turbine scale models both experimentally and numerically. The turbine scale models will have different designs with different overlap ratios (ratio of gap between two adjacent blades and the rotor diameter) and without overlap within three blades. The experimental measurements and testing will be conducted in front of a low speed subsonic wind tunnel at different Reynolds number and the computational fluid dynamic (CFD) flow simulation around those design models will be performed by commercial CFD software FLUENT and GAMBIT.


Author(s):  
Ali Kianifar ◽  
Morteza Anbarsooz ◽  
Mohammad Javadi

In this study, the effect of blade curve on the power coefficient of a Savonius rotor is investigated by means of numerical simulation and wind tunnel tests. The tests were conducted on six rotors with identical dimensions but different blade curves, and the influences of blade curve and Reynolds number were studied. Followed by a simulation of the flow field around rotors with identical semi-circular curves and different overlaps, torque was calculated using pressure distribution on the blade surface, and the effect of Reynolds number and blade curve were studied on torque as well. Results indicate that changing the blade curve affects the power coefficient and torque by causing different drag coefficients. Also the rotor that yields the highest power coefficient and torque in one revolution compared with other rotors is highlighted.


2019 ◽  
Vol 11 (4) ◽  
pp. 155-170
Author(s):  
Aravind SEENI

In this paper, designs of slotted propeller blade were discussed numerically, in terms of aerodynamic performance and static structural analysis. Baseline APC Slow Flyer 10’ x 7’ small scale propeller blade was modified by including slots along the propeller blade. Numerical analysis has been done to determine the influence of slots angle towards thrust coefficient, power coefficient and efficiency. Simulations were performed by using ANSYS Fluent implementing k-ω turbulence model and Multiple Reference Frame to incorporate rotational speed of the propeller. The analyses were conducted at a fixed rotational speed, with variance of advance ratio. Initial slotted design is set at 180 degree and the angles were changed with 10-degree interval, ranging from 180 degree to 90 degree. The results were compared with available experimental data. For the slotted design, the result shows that inducing slots do not always lead to improvement in propeller blade performance. Improvement in thrust coefficient with the range of 0.267% to 2.71% can be seen for low advance ratio for most of slot angles. However, a significant increase in power coefficient can be observed which reduces the overall efficiency of the propeller blade. For stress and deformation, ANSYS Mechanical Static Structure was used to determine maximum Von-Mises stress, maximum Von-Mises strain, and total deformation. The analyses were conducted by using 60% long strand fiber glass reinforced nylon 6 Natural. The blade is more suitable to operate at higher velocity. At lower operational velocity, the blade tends to experience material failure as the stress exceeds stress at break.


2016 ◽  
Vol 53 ◽  
pp. 136-153 ◽  
Author(s):  
Oliviu Şugar Gabor ◽  
Andreea Koreanschi ◽  
Ruxandra Mihaela Botez ◽  
Mahmoud Mamou ◽  
Youssef Mebarki

2021 ◽  
Author(s):  
Zhixiang Huang ◽  
Hanjie Huang ◽  
Weiping Zeng ◽  
Li Chen ◽  
Renyu Zhu

Abstract The influences of vestibule diaphragm gap, wheel-rail clearance, and strut-plate gap on the aerodynamic drag of a 1/8th-scale high-speed train model were investigated in an 8 m×6 m wind tunnel. The Reynolds number was set to 2.2×106 based on train height. It was found that the variation of the vestibule diaphragm gap changed the aerodynamic drag distribution pattern of each car; the drag coefficient of the head and middle cars might change as high as 45%; however, the change in the drag coefficient of the total train was very small. The effects of the strut-plate gap on the aerodynamic drag of each car and the total train were small. The effect of the wheel-rail clearance on the drag of the head car was not significant. It was suggested that the vestibule diaphragm gap, strut-plate gap and wheel-rail clearance of the 1:8 scale high-speed train model should not be greater than 11, 10, and 9 mm, respectively.


2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


2018 ◽  
Vol 859 ◽  
pp. 819-838 ◽  
Author(s):  
Josef Hasslberger ◽  
Sebastian Ketterl ◽  
Markus Klein ◽  
Nilanjan Chakraborty

The local flow topology analysis of the primary atomization of liquid jets has been conducted using the invariants of the velocity-gradient tensor. All possible small-scale flow structures are categorized into two focal and two nodal topologies for incompressible flows in both liquid and gaseous phases. The underlying direct numerical simulation database was generated by the one-fluid formulation of the two-phase flow governing equations including a high-fidelity volume-of-fluid method for accurate interface propagation. The ratio of liquid-to-gas fluid properties corresponds to a diesel jet exhausting into air. Variation of the inflow-based Reynolds number as well as Weber number showed that both these non-dimensional numbers play a pivotal role in determining the nature of the jet break-up, but the flow topology behaviour appears to be dominated by the Reynolds number. Furthermore, the flow dynamics in the gaseous phase is generally less homogeneous than in the liquid phase because some flow regions resemble a laminar-to-turbulent transition state rather than fully developed turbulence. Two theoretical models are proposed to estimate the topology volume fractions and to describe the size distribution of the flow structures, respectively. In the latter case, a simple power law seems to be a reasonable approximation of the measured topology spectrum. According to that observation, only the integral turbulent length scale would be required as an input for the a priori prediction of the topology size spectrum.


Author(s):  
Lifu Wang ◽  
Dongyan Shi ◽  
Zhixun Yang ◽  
Guangliang Li ◽  
Chunlong Ma ◽  
...  

Abstract To further investigate and improve the cleaning ability of the cavitation nozzle, this paper proposes a new model that is based on the Helmholtz nozzle and with the quadratic equation curve as the outer contour of the cavitation chamber. First, the numerical simulation of the flow field in the nozzle chamber was conducted using FLUENT software to analyze and compare the impact of the curve parameters and Reynolds number on the cleaning effect. Next, the flow field was captured by a high-speed camera in order to study the cavitation cycle and evolution process. Then, experiments were performed to compare the cleaning effect of the new nozzle with that of the Helmholtz nozzle. The study results demonstrate that effective cavitation does not occur when the diameter of the cavitation chamber is too large. For the new nozzle, with the increase of the Reynolds number, the degree of cavitation in the chamber first increases and then decreases; the cleaning effect is much better than that of a traditional Helmholtz nozzle under the same conditions; the nozzle has the best cleaning effect for the stand-off distance of 300 mm.


Sign in / Sign up

Export Citation Format

Share Document