scholarly journals Numerical simulation and experimental research of cavitation nozzle based on equation curve

Author(s):  
Lifu Wang ◽  
Dongyan Shi ◽  
Zhixun Yang ◽  
Guangliang Li ◽  
Chunlong Ma ◽  
...  

Abstract To further investigate and improve the cleaning ability of the cavitation nozzle, this paper proposes a new model that is based on the Helmholtz nozzle and with the quadratic equation curve as the outer contour of the cavitation chamber. First, the numerical simulation of the flow field in the nozzle chamber was conducted using FLUENT software to analyze and compare the impact of the curve parameters and Reynolds number on the cleaning effect. Next, the flow field was captured by a high-speed camera in order to study the cavitation cycle and evolution process. Then, experiments were performed to compare the cleaning effect of the new nozzle with that of the Helmholtz nozzle. The study results demonstrate that effective cavitation does not occur when the diameter of the cavitation chamber is too large. For the new nozzle, with the increase of the Reynolds number, the degree of cavitation in the chamber first increases and then decreases; the cleaning effect is much better than that of a traditional Helmholtz nozzle under the same conditions; the nozzle has the best cleaning effect for the stand-off distance of 300 mm.

2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


2018 ◽  
Vol 179 ◽  
pp. 03007
Author(s):  
Jinling Wang ◽  
Guangwen Jiang ◽  
Jun Shen ◽  
Chujun Hu

The sharp 90°corner of bow found on American Tarawa class general amphibious assault ship LHA-1 will produce large separated region in the airwake over the ship, and the turbulence in the separation region seriously affects the operation safety of the helicopter. In order to reduce the separation in bow region of the LHA-1, and optimize the helicopter operating environment, the numerical simulation method is used to study the influence of the bow flap on the airwake of LHA-1. The study results show that: the ANSYS k-ε two equation model based on the hybrid grid can be used to predict the steady-state characteristics of the ship airwake; the bow flap can improve the flow field downwind of the flap installation position, and the impact range can cover two spots; in headwind, the optimal installation angle of the bow flap is 15°~25°. The research results of this paper can provide modification and improvement reference for the amphibious assault ship in-service and under construction, so as to achieve the purpose of optimizing the ship airwake, thereby improving the safety of helicopter landing process and extending the service life.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 19
Author(s):  
Ola Elfmark ◽  
Robert Reid ◽  
Lars Morten Bardal

The purpose of this study was to investigate the impact of blockage effect and Reynolds Number dependency by comparing measurements of an alpine skier in standardized positions between two wind tunnels with varying blockage ratios and speed ranges. The results indicated significant blockage effects which need to be corrected for accurate comparison between tunnels, or for generalization to performance in the field. Using an optimized blockage constant, Maskell’s blockage correction method improved the mean absolute error between the two wind tunnels from 7.7% to 2.2%. At lower Reynolds Numbers (<8 × 105, or approximately 25 m/s in this case), skier drag changed significantly with Reynolds Number, indicating the importance of testing at competition specific wind speeds. However, at Reynolds Numbers above 8 × 105, skier drag remained relatively constant for the tested positions. This may be advantageous when testing athletes from high speed sports since testing at slightly lower speeds may not only be safer, but may also allow the athlete to reliably maintain difficult positions during measurements.


2013 ◽  
Vol 5 (3) ◽  
pp. 435-445
Author(s):  
M. S. I. Mallik ◽  
M. A. Uddin ◽  
M. A. Rahman

Direct numerical simulation (DNS) in two-dimensional homogeneous isotropic turbulence is performed by using the Spectral method at a Reynolds number Re = 1000 on a uniformly distributed grid points. The Reynolds number is low enough that the computational grid is capable of resolving all the possible turbulent scales. The statistical properties in the computed flow field show a good agreement with the qualitative behavior of decaying turbulence. The behavior of the flow structures in the computed flow field also follow the classical idea of the fluid flow in turbulence. Keywords: Direct numerical simulation, Isotropic turbulence, Spectral method. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi:http://dx.doi.org/10.3329/jsr.v5i3.12665 J. Sci. Res. 5 (3), 435-445 (2013)  


2018 ◽  
Vol 41 (4) ◽  
pp. 990-1001
Author(s):  
Song Ma ◽  
Jianguo Tan ◽  
Xiankai Li ◽  
Jiang Hao

This paper establishes a novel mathematical model for computing the plume flow field of a carrier-based aircraft engine. Its objective is to study the impact of jet exhaust gases with high temperature, high speed and high pressure on the jet blast deflector. The working condition of the nozzle of a fully powered on engine is first determined. The flow field of the exhaust jet is then numerically simulated at different deflection angle using the three-dimensional Reynolds averaged Navier–Stokes equations and the standard [Formula: see text]-[Formula: see text] turbulence method. Moreover, infra-red temperature tests are further carried out to test the temperature field when the jet blast deflector is at the [Formula: see text] deflection angle. The comparison between the simulation results and the experimental results show that the proposed computation model can perfectly describe the system. There is only 8–10% variation between them. A good verification is achieved. Moreover, the experimental results show that the jet blast deflector plays an outstanding role in driving the high-temperature exhaust gases. It is found that [Formula: see text] may be the best deflection angle to protect the deck and the surrounding equipment effectively. These data results provide a valuable basis for the design and layout optimization of the jet blast deflector and deck.


Author(s):  
Shuo Ouyang ◽  
Zhenqin Xiong

Abstract Steam water separator is the core equipment of nuclear power plant. It is very vital for improving the efficiency of the steam separator to study the impact characteristics between the droplets and the curved dry wall of the steam separator under the action of the rotating air flow. In this paper, the characteristics of droplet impinging on the dry wall in the rotating flow field are analyzed by establishing a visualization experimental device. A high-speed camera was used to capture the impact of droplets with different diameters on the dry wall of a non-wetting curved surface at different gas velocities. At the same time, using image processing tool in MATLAB to obtain image boundary information. The characteristics of spreading factor, droplet deformation factor and initial diffusion velocity of droplets impacting the surface dry wall under different wind speeds are studied.


2013 ◽  
Vol 390 ◽  
pp. 464-467
Author(s):  
Da Lei Luo ◽  
Jun Liu ◽  
Yuan Wang ◽  
Deng Feng Fan

It counts the impact on the infrared radiation seeker which in the head of the hypersonic missile. Firstly, it built the calculated model based on the shape of a missile, and compartmentalized the aerodynamics flow field grid , the infrared radiation seeker main mirror grid , the radiation field grid, and had the relation of the grids unambiguous, and got the communication of the aerodynamics flow field. Then it educed irradiance formula about the shock layer aerodynamic flow fled radiation affect to the infrared radiation seeker main mirror. The result is the infrared radiation wave band 3~5 to the main mirror, from the shock layer aerodynamic flow fled is about 120 W/m2. The distributing law of the impact is annular circumfused the center of the main mirror, the infrared radiation is the highest in the center of the main mirror, decreased by the radius of the main mirror.


Sign in / Sign up

Export Citation Format

Share Document