Finite element modeling of interaction between non-pneumatic mechanical elastic wheel and soil

Author(s):  
Yao-Ji Deng ◽  
You-Qun Zhao ◽  
Han Xu ◽  
Ming-Min Zhu ◽  
Zhen Xiao

The tire/soil interaction is an important and complex research topic in vehicle-terrain mechanics, which has a great influence on vehicle mobility and soil compaction. The purpose of this work was to develop a detailed nonlinear finite element model for parametric analysis of the interaction between mechanical elastic wheel and the soil. The three-dimensional finite element model of the mechanical elastic wheel, which considers material nonlinearity, geometric nonlinearity, as well as large contact deformation between the mechanical elastic wheel and soil, was developed based on the physical model. The reliability and accuracy of the finite element model were validated by comparing the predicted wheel static loading characteristics in rigid plane with those of experiments. The finite element model of the soil is modeled as a two-layer system and the Extended Drucker–Prager model was used to describe the nature soil properties. The deformation and stress of the soil and mechanical elastic wheel under the static loading condition were studied in detail. Moreover, the effects of the axial load on mechanical elastic wheel/soil interaction were also analyzed. The research results could offer reference for an optimum structural design of a mechanical elastic wheel and a prediction of soil compaction caused by non-pneumatic tires.

2013 ◽  
Vol 645 ◽  
pp. 440-444
Author(s):  
Xian Min Zhang ◽  
Xuan Bao ◽  
Zhang Wei

The thickness of the subgrade model has great impact on the frequency when analyzing the fundamental frequency of the runway by the finite element model, and airport runway under different model of plane will has different influence depth of subgrade. In this paper, an airport runway finite element model, which is base on elastic layer system theory, is established to be loaded different model of plane. The results show that the influence depth of subgrade under different aircraft types, as well as the relationship curves of the influence depth and frequency.


2011 ◽  
Vol 52-54 ◽  
pp. 989-994
Author(s):  
Xiao Peng Li ◽  
Wei Nie ◽  
Bang Chun Wen

Linear rolling guide is one of the most essential parts of the NC modern machine tools, and they play a significant supporting and guiding role in machine tools components. Especially, the joint surface between guides has great influence on machine's dynamic characteristics. According to this, in this work, taken the Japanese THK Corporation's SNS35LR rolling guide as specific study object, the finite element model of guide pair has been established with the joint surface influence considered. And by the method of the theoretical analysis with the experimental confirmation combined; the dynamic characteristics of the linear rolling guide pair's were studied relatively. Thus, the theoretical model and the finite element model established in this paper can be confirmed by the experiment. It has been found that the theoretical models established are consistent with the results of experiment. This study results can provide useful guidance for the dynamic analysis and the structure optimization of CNC machine tools, and numerical simulation in engineering and design in the development of such machines with rolling guide used.


Author(s):  
Chenxi Zhang ◽  
Youqun Zhao ◽  
Shilin Feng ◽  
Han Xu ◽  
Qiuwei Wang ◽  
...  

The paper studies the radial stiffness of mechanical elastic wheel (MEW), which is regarded as a circular ring with uncertain boundary conditions for the first time, and proposes a ring-chain model to solve the radial stiffness of the ring. Different from assuming the boundary conditions by experience or building finite element model with complex processes from previous researches, the ring-chain model coupling circular ring model and dynamics of multi-rigid body is accurate and simple to find the loaded positions of ring and make the boundary conditions clear. The results show that the ring-chain model can be solved to get the deformations and loaded positions of ring, the radial stiffness of MEW is large, and the radial displacement of MEW increases non-linearly. The results are consistent with that from finite element model under the same settings, but the time cost of ring-chain model is less. In addition, the influence factors of ring radial stiffness are also found and analyzed. The method presented in this paper can provide data for the response analyses of vehicle and references for the analysis of circular ring with uncertain boundary conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.


2013 ◽  
Vol 671-674 ◽  
pp. 1012-1015
Author(s):  
Zhao Ning Zhang ◽  
Ke Xing Li

Due to the environment, climate, loads and other factors, the pre-stress applied to the beam is not a constant. It is important for engineers to track the state of the pre-stress in order to ensure security of the bridge in service. To solve the problem mentioned above, the paper puts forward a new way to analyze the effective pre-stress using the displacement inversion method based on the inversion theory according to the measured vertical deflection of the bridge in service at different time. The method is a feasible way to predict the effective pre-stress of the bridge in service. Lastly, taking the pre-stressed concrete continuous rigid frame bridge for example, the effective pre-stress is analyzed by establishing the finite element model.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3258 ◽  
Author(s):  
Valery Gupalov ◽  
Alexander Kukaev ◽  
Sergey Shevchenko ◽  
Egor Shalymov ◽  
Vladimir Venediktov

The paper considers the construction of a piezoelectric accelerometer capable of measuring constant linear acceleration. A number of designs are proposed that make it possible to achieve high sensitivity with small dimensions and a wide frequency band (from 10−5 Hz). The finite element model of the proposed design was investigated, and its output characteristic and scale factor (36 mV/g) were obtained.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


Sign in / Sign up

Export Citation Format

Share Document