Multi-objective vehicle optimization: Comparison of combustion engine, hybrid and electric powertrains

Author(s):  
Nikola Holjevac ◽  
Federico Cheli ◽  
Massimiliano Gobbi

The use of optimization techniques has been extensively adopted in vehicle design and with the increasing complexity of systems, especially with the introduction of new technologies, it plays an even more significant role. Market competition, stringent mandatory emission regulations and the need for a future sustainable mobility have raised questions over conventional vehicles and are pushing toward new cleaner and eco-friendly solutions. Fulfilling this target without sacrificing the other vehicle’s requirements leads to extremely challenging tasks for vehicle designers. The use of virtual prototyping emerges as a possible breakthrough allowing to rapidly assess the effect of design changes and the impact of new technologies. The study presented in this work provides a suitable approach to compare different vehicle powertrain architectures through optimization techniques and deploying model-based simulation to rapidly assess vehicle performances. The vehicle model is defined at the components level through scalable models obtained from based on detailed simulation. An optimal energy management is applied to the power sources and transmission gear shifting. The optimization technique consider the main design variables of the various components including vehicle chassis and extensively exploits the design space. The multi-objective optimization considers vehicle’s consumption, emission, range, longitudinal and lateral dynamics, costs and further performances to comprehensively assess the vehicle. The results allow to compare four different powertrain architectures: combustion engine vehicle, hybrid electric vehicle with parallel and series configuration, and battery electric vehicle. The results allows furthermore to identify technological limitations and conflicts among the different objectives. A critical analysis over the main design variables allows to identify the more suitable values and in particular, for combustion engine, gearbox and electric traction drive detailed comparisons are provided.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Estrella Diaz ◽  
Águeda Esteban ◽  
Rocío Carranza Vallejo ◽  
David Martín-Consuegra Navarro

PurposeThis paper aims to analyze the evolution of digital and smart technologies and their relationship with different themes within marketing journals. In addition, this study has included the evolution of digital and smart technologies in relevant International Marketing (IM)/International Business (IB) journals to describe the impact of technology on this specific area to draw some interesting conclusions.Design/methodology/approachA bibliometric approach is applied in this research using science mapping analysis to visualize and reveal the evolution of smart and digital technologies in this specific academic area.FindingsBy combining science maps with performance indicators, the results of this study suggest that new technologies are related to eight main topics within marketing journals: implementation-completion, perceptions, behavior, market competition, adoption-diffusion model, social media, competitive advantage and disruptive technology. Additionally, this work provides new avenues for future research. When analyzing IM and IB journals, the findings highlight six thematic areas: perceptions-eWOM relationship, innovative foreign markets, performance determinants, Japan, industrial research and China.Originality/valueThis study contributes theoretically to developing and describing a framework for research in smart and digital technologies in the general marketing and international marketing/business fields. It adds a coherent perspective on the points of contact in marketing evolution, where smart technology has a meaningful role. This study outlines the changing questions surrounding the touchpoints as well as emerging research topics.


Author(s):  
Keiji Tajiri ◽  
Jinhui Zhao ◽  
William C. Hohlweg ◽  
Haijie Zhang

Automatic optimization techniques have been used in recent years to facilitate more rapid analyses of different design options with multiple performance objectives. Typically, this process has been used during new product development. In this paper, a design system is presented, which enables the multipoint, multi-objective optimization of the centrifugal compressor stage aerodynamic components. Moreover, it is applied to a design modification of a multistage compressor, during the manufacturing cycle, for risk mitigation. The system is based on the application of the Isight code for coupling of one dimensional direct design and analysis with multi-objective genetic algorithms, design of experiment, and response surface method. The design system was applied to a redesign of the diffuser, crossover, and return channel of two stages in a multistage compressor. The geometry parameterization is performed by a one dimensional analysis method where the diffuser width, crossover inlet and exit width and associated inner and outer radii, are used to describe the meridional flow path while holding the return vane geometry unchanged. Centrifugal compressor performance parameters, such as polytropic head and efficiency at the client rated point, head rise to surge, and choke flow capacity are evaluated during the optimization process. The example confirmed the validity of the system to perform the optimization of turbomachine components in a time efficient manner to meet production schedule. The system also allowed for a sensitivity analysis of the impact of geometry parameters on the aerodynamic performance, contributing to the development of guidelines for manufacturers to design new products and mitigate the performance risk on test floor.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096262
Author(s):  
Yupeng Zou ◽  
Ruchen Huang ◽  
Xiangshu Wu ◽  
Baolong Zhang ◽  
Qiang Zhang ◽  
...  

A power-split hybrid electric vehicle with a dual-planetary gearset is researched in this paper. Based on the lever analogy method of planetary gearsets, the power-split device is theoretically modeled, and the driveline simulation model is built by using vehicle modeling and simulation toolboxes in MATLAB. Six operation modes of the vehicle are discussed in detail, and the kinematic constraint behavior of power sources are analyzed. To verify the rationality of the modeling, a rule-based control strategy (RB) and an adaptive equivalent consumption minimization strategy (A-ECMS) are designed based on the finite state machine and MATLAB language respectively. In order to demonstrate the superiority of A-ECMS in fuel-saving and to explore the impact of different energy management strategies on emission, fuel economy and emission performance of the vehicle are simulated and analyzed under UDDS driving cycle. The simulation results of the two strategies are compared in the end, shows that the modeling is rational, and compared with RB strategy, A-ECMS ensures charge sustaining better, enables power sources to work in more efficient areas, and improves fuel economy by 8.65%, but significantly increases NOx emissions, which will be the focus of the next research work.


Author(s):  
Kazuyuki Sugimura ◽  
Shinkyu Jeong ◽  
Shigeru Obayashi ◽  
Takeshi Kimura

A new design approach named MORDE (multi-objective robust design exploration), in which multi-objective robust optimization techniques and data mining techniques are combined, is proposed in this paper. We first developed a widely applicable design framework for multi-objective robust optimization. In this framework, probabilistic representation of design variables are introduced and Kriging models are used to approximate relations between design variables with uncertainty and multiple design objectives. A multi-objective genetic algorithm optimizes the mean and standard deviation of the responses. We then applied the framework to the real-world design problem of a centrifugal fan used in a washer-dryer. Taking dimensional uncertainty into account, we optimized the means and standard deviations of the resulting distributions of fan efficiency and turbulent noise level. Steady Reynolds-averaged Navier Stokes simulations were used to build Kriging models that approximate these objective functions. With the obtained non-dominated solutions, we demonstrated how to analyze features of solutions and select design candidates. We also attempted to acquire design knowledge by applying several data mining techniques. Self-organizing map was used to visualize and reuse the high dimensional design data. Decision tree analysis and rough set theory were used to extract design rules to improve the product’s performance. We also discussed differences in types of rules, which were extracted by both methods.


In recent days, the demand for petroleum and emission of pollutant gases continuously increase. This necessitates the electrification power train which replaces Internal Combustion Engine (ICE). Despite pure electric vehicles or Battery Electric Vehicle (EV) reduce the greenhouse gas emissions, there are some major hurdles for EVs to overcome before they totally relieve ICE vehicles form transport sector such as range anxiety, battery storage, economic fall down due to automobile industries, etc. This necessitates Hybrid Electric vehicle (HEV) which combines two different power sources to propel the vehicle. One of the challenges in HEV is how to control the power coming from the two different sources such as battery and ICE. The prime goal of an Energy Management Strategy (EMS) is to manage energy flow such that fuel consumption and emissions are minimized without affecting the vehicle’s performance. In this paper, the different structures of power train and energy management strategies are analysed.


2010 ◽  
Vol 107 ◽  
pp. 129-139
Author(s):  
André M. Dias ◽  
João C.S.S. Barros ◽  
Luís M.V. Serrano

The main motivation for the present work was the idea to project and build a car, with a hybrid source of power, based on an electric engine, a group of batteries and a source of energy that can be a combustion engine with an electric generator, a fuel-cell or other. The main use of this vehicle was on an urban circuit, but allowing it to make broader circuits. The purpose of this task was to select, with a sustained study, what are the solutions for the source of energy for that kind of vehicle, considering the environmental, energetic and economical perspectives. The main project idea was to make a hybrid vehicle, with a higher autonomy than a simple electric vehicle, with a lower consumption as possible, and as cleaner and quiet as an electric vehicle can be. With this idea in mind, the future user can have an economic vehicle, with lower pollution emissions which can be used also in other voyages, because it has higher autonomy and can be refuelled more easily. In order to achieve the objectives of this work, it was made a research about the life cycle impacts considering several possible energetic choices. Based in three different international studies it was tried to make the proper connection to the Portuguese reality. This involved the extrapolation of the results obtained for other possibilities not mentioned as, for instance, the impact of the electricity production, based in the Portuguese data. For the energetic analysis, several scenarios were made, based on the higher heating value of the different fuels possibilities and on the thermal efficiency of different technologic arrangements. It was made a consumption determination, and a comparative analysis could be done for the several hypotheses that were at stake. Assuming a typical urban vehicle, with places for four persons, and taking into account the actual vehicles reality, the determination of the fuel consumption of that kind of vehicle were made, with similar weight and dimensions characteristics. This evaluation gives the total energy necessary for a vehicle of this kind and the percentage of electric energy that can be saved and also the percentage that has to be used. This can give the quantity of energy that has to be produced to assure that the car can move in urban and extra-urban typical journeys. Considering the energy consumption and how much it costs and the market price for engines, it is possible to make an economical analysis for the several possibilities. Taken into account the several results obtained, for the different choices that were object of the present study, it could be concluded about the choice for better source of energy to generate electric energy for propulsion to the hybrid vehicle.


2021 ◽  
Vol 2 ◽  
Author(s):  
Cathy Macharis ◽  
Sara Tori ◽  
Alice de Séjournet ◽  
Imre Keseru ◽  
Lieselot Vanhaverbeke

In this paper, we investigate what the impact of the COVID-19 crisis was on travel patterns and how it could be a catalyst for the transition toward a more sustainable mobility system. To study this, we use the sustainable mobility framework of the 7A's, namely Awareness, Avoidance, Act and Shift, Anticipation of new technologies, Actor involvement, Acceleration, and Adaptation of behavior. For each of the first 5A's, we analyze the changes in mobility brought along in the different periods of the COVID-19 crisis. Our mixed methods approach includes a thematic analysis of online press articles and an analysis of traffic and passenger volume data in Brussels, Belgium. Our results show that the measures to stop the spread of the COVID-19 virus had significant consequences for mobility in Brussels by raising Awareness of the positive impacts reduced traffic can have on livability. The measures decreased travel demand (Avoidance) in general, but especially in the context of commuting and shopping trips which declined in favor of telework and online shopping. The majority of mobility measures that were implemented belong to the Act and shift category and they were especially aimed at promoting active mobility like walking. There was also a positive influence on the Anticipation of new technologies, as internal combustion engine sales dropped and electric vehicle sales increased. However, the data analysis also shows an incremental return to business-as-usual after the 2020 summer holidays. Parts of this can be linked back to a disregard of Actor involvement, resulting in a resistance from stakeholders to several of the measures. We conclude with recommendations based on Acceleration and Adaptation of behavior on how to support a sustainable transition and lasting behavioral change in the post-COVID era.


Author(s):  
Mehran Bidarvatan ◽  
Mahdi Shahbakhti

Energy management strategies in a parallel Hybrid Electric Vehicle (HEV) greatly depend on the accuracy of internal combustion engine (ICE) data. It is a common practice to rely on static maps for required engine torque-fuel efficiency data. The engine dynamics are ignored in these static maps and it is uncertain how neglecting these dynamics can affect fuel economy of a parallel HEV. This paper presents the impact of ICE dynamics on the performance of the torque split management strategy. A parallel HEV torque split strategy is developed using a method of model predictive control. The control strategy is implemented on a HEV model with an experimentally validated, dynamic ICE model. Simulation results show that the ICE dynamics can degrade performance of the HEV control strategy during the transient periods of the vehicle operation by more than 20% for city driving conditions in a common North American drive cycle. This also leads to substantial fuel penalty which is often overlooked in conventional HEV energy management strategies.


Author(s):  
Xin Deng ◽  
Cori Watson ◽  
Minhui He ◽  
Roger Fittro ◽  
Houston Wood

Abstract Fluid film bearings for turbomachinery are designed to support the loads applied by the rotor system. Oil-lubricated bearings are widely used in high speed rotating machines. However, environmental issues and risk-averse operations have made water lubricated bearings increasingly popular. Due to different viscosity properties between oil and water, the low viscosity of water decreases film thickness significantly. Crowning and tapers are two main ways to maintain the film thickness requirements in water lubrication, but no studies about the influence of these parameters on the film thickness in water-lubricated bearings have been reported. Therefore, further understanding of the performance associated with optimizing the bearing design with different weighted performance and their relationships to bearing design variables could be invaluable to bearing design engineers. This study explores the impact of three crowning and taper design variables on the performance of one tilting pad thrust bearing using the design of experiments techniques applied to a thermoelastohydrodynamic (TEHD) bearing model. The bearing design variables analyzed in this study include the radius of the ground-in crown, taper circumferential angle offset, and the vertical taper distance at the inner and outer radii. Each of the design variables is first varied over five levels, each in central composite design. The outputs from the TEHD numerical simulations used as performance measures for each bearing design point were the minimum film thickness, the film thickness at the pivot location, maximum film pressure and power loss. Multi-objective optimization was performed. A range of weighting parameters was selected for the optimization function to find a bearing design that maintains the minimum film thickness criterion while minimizing power loss. The resulting optimum design points allowed for a comparison between the design optimization at different weightings. This study demonstrates how designers can use these approaches to view the relationships between design variables and important performance metrics to design better bearing for a wide range of applications.


2021 ◽  
Vol 28 (2) ◽  
pp. 96-101
Author(s):  
Zygfryd Domachowski

Abstract To confront climate change, decarbonization strategies must change the global economy. According to statements made as part of the European Green Deal, maritime transport should also become drastically less polluting. As a result, the price of transport must reflect the impact it has on the environment and on health. In such a framework, the purpose of this paper is to suggest a novel method for minimizing emissions from ships, based on so-called Pareto multi-objective optimization. For a given voyage by a ship, the problem is to minimize emissions on the one hand and minimize fuel consumption or passage time on the other. Minimizing emissions is considered as the preferred objective. Therefore, the objective of minimizing fuel consumption or passage time needs to be reformulated as a constraint. Solving such a problem consists of finding most favourable path and speed for the ship and satisfying the optimization criteria. Relatively new systems such as hybrid diesel–electric systems have the potential to offer significant emissions benefits. A hybrid power supply utilizes the maximum efficiency of the direct mechanical drive and the flexibility of a combination of combustion power from the prime mover and stored power from energy storage from an electrical supply, at part load and overload. A new report by the American Bureau of Shipping suggests that maritime transport is likely to meet the International Maritime Organization’s target by 2030, solely by using current technology and operational measures. However, this would not be enough to attain the target of reducing CO2 emissions by 2050 by at least 50% compared to 2008. New technologies and operational methods must be applied.


Sign in / Sign up

Export Citation Format

Share Document