Optimal adaptive race strategy for a Formula-E car

Author(s):  
Pier Giuseppe Anselma

Appropriately managing battery state-of-charge and temperature while ensuring minimized lap time represents a crucial issue in Formula-E competitions. An open research question might relate to simultaneously guarantee near-optimality in the race strategy solution, computational light-weighting, and effective adaptability with respect to varying and unpredictable race conditions. In this paper, a novel near-optimal real-time capable Formula-E race controller is introduced that takes inspiration from the adaptive equivalent consumption minimization strategy (A-ECMS) approach. A reduced-order Formula-E car plant model is detailed first. The optimal Formula-E race problem subsequently discussed involves controlling at each lap the depletable battery energy, the thermal management mode, and the race mode in order to minimize the overall race time. Moreover, avoiding excessively depleting the battery energy and overheating the battery are considered as constraints for the race optimization problem. Dynamic programing (DP) is implemented first to obtain the global optimal Formula-E race strategy solution in an off-line control approach. The proposed real-time capable A-ECMS based race controller finds then detailed illustration. The flexibility of the introduced A-ECMS Formula-E race controller is guaranteed by optimally calibrating the related equivalence factors to adapt to the current vehicle states (i.e. battery state-of-charge, battery temperature, and lap number). Simulation results for the Marrakesh e-prix considering different race scenarios in terms of battery initial temperature and Safety car entry demonstrate that the estimated race time achieved by the A-ECMS race controller is always near-optimal being 1.7% higher at most compared with the corresponding global optimal benchmark provided by DP.

2018 ◽  
Vol 148 ◽  
pp. 258-265 ◽  
Author(s):  
Gabriele Caramia ◽  
Nicolò Cavina ◽  
Michele Caggiano ◽  
Stefano Patassa ◽  
Davide Moro

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Ma

In order to maximize the operating flexibility and optimize the system performance of a battery energy storage system (BESS), developing a reliable real-time estimation method for the state of charge (SOC) of a BESS is one of the crucial tasks. In practice, the accuracy of real-time SOC detection can be interfered with by various factors, such as battery’s intrinsic nonlinearities, working current, temperature, and aging level, etc. Considering the feasibility in practical applications, this paper proposes a hybrid real-time SOC estimation scheme for BESSs based on an adaptive network-based fuzzy inference system (ANFIS) and Coulomb counting method, where a commercially available lead-acid battery-based BESS is used as the research target. The ANFIS allows effective learning of the nonlinear characteristics in charging and discharging processes of a battery. In addition, the Coulomb counting method with an efficiency adjusting mechanism is simultaneously used in the proposed scheme to provide a reference SOC for checking the system reliability. The proposed estimating scheme was first simulated in a Matlab software environment and then implemented with an experimental hardware setup, where an industrial-grade digital control system using DS1104 as the control kernel and dSPACE Real-Time Interface (RTI) interface were used. Results from both simulation and experimental tests verify the feasibility and effectiveness of the proposed hybrid SOC estimation algorithm.


Author(s):  
Wisdom Enang ◽  
Chris Bannister

Improved fuel efficiency in hybrid electric vehicles requires a delicate balance between the internal combustion engine usage and battery energy, using a carefully designed energy management control algorithm. Numerous energy management strategies for hybrid electric vehicles have been proposed in literature, with many of these centered on the equivalent consumption minimisation strategy (ECMS) owing to its potential for online implementation. The key challenge with the equivalent consumption minimisation strategy lies in estimating or adapting the equivalence factor in real-time so that reasonable fuel savings are achieved without over-depleting the battery state of charge at the end of the defined driving cycle. To address the challenge, this paper proposes a novel state of charge feedback ECMS controller which simultaneously optimises and selects the adaption factors (proportional controller gain and initial equivalence factor) as single parameters which can be applied in real time, over any driving cycle. Unlike other existing state of charge feedback methods, this approach solves a conflicting multiple-objective optimisation control problem, thus ensuring that the obtained adaptation factors are optimised for robustness, charge sustenance and fuel reduction. The potential of the proposed approach was thoroughly explored over a number of legislative and real-world driving cycles with varying vehicle power requirements. The results showed that, whilst achieving fuel savings in the range of 8.40 −19.68% depending on the cycle, final battery state of charge can be optimally controlled to within ±5% of the target battery state of charge.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 13170-13180 ◽  
Author(s):  
Dong Zheng ◽  
Huimin Wang ◽  
Jingjing An ◽  
Jing Chen ◽  
Haihong Pan ◽  
...  

Author(s):  
Scott J. Moura ◽  
Nalin A. Chaturvedi ◽  
Miroslav Krstić

This paper develops an adaptive partial differential equation (PDE) observer for battery state-of-charge (SOC) and state-of-health (SOH) estimation. Real-time state and parameter information enables operation near physical limits without compromising durability, thereby unlocking the full potential of battery energy storage. SOC/SOH estimation is technically challenging because battery dynamics are governed by electrochemical principles, mathematically modeled by PDEs. We cast this problem as a simultaneous state (SOC) and parameter (SOH) estimation design for a linear PDE with a nonlinear output mapping. Several new theoretical ideas are developed, integrated together, and tested. These include a backstepping PDE state estimator, a Padé-based parameter identifier, nonlinear parameter sensitivity analysis, and adaptive inversion of nonlinear output functions. The key novelty of this design is a combined SOC/SOH battery estimation algorithm that identifies physical system variables, from measurements of voltage and current only.


Sign in / Sign up

Export Citation Format

Share Document