Optimum dog-leg angle for mass and bearing force optimization of multistage gear reduction

Author(s):  
Mattias Svahn ◽  
Rikard Hjelm

This paper describes a method to minimize bearing forces as well as bearing and housing mass for a multistage gear reduction. This is done by finding the optimum dog-leg angles for the stages while leaving other aspects of the design unaltered. The optimization is demonstrated first for spur gears, and then for helical gears typically used in electric vehicles. A numerical example shows how bearing forces and mass of bearings and housing are reduced considerably by choosing the optimum dog-leg angle.

2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Alessio Artoni ◽  
Massimo Guiggiani

The teeth of ordinary spur and helical gears are generated by a (virtual) rack provided with planar generating surfaces. The resulting tooth surface shapes are a circle-involute cylinder in the case of spur gears, and a circle-involute helicoid for helical gears. Advantages associated with involute geometry are well known. Beveloid gears are often regarded as a generalization of involute cylindrical gears involving one additional degree-of-freedom, in that the midplane of their (virtual) generating rack is inclined with respect to the axis of the gear being generated. A peculiarity of their generation process is that the motion of the generating planar surface, seen from the fixed space, is a rectilinear translation (while the gear blank is rotated about a fixed axis); the component of such translation that is orthogonal to the generating plane is the one that ultimately dictates the shape of the generated, envelope surface. Starting from this basic fact, we set out to revisit this type of generation-by-envelope process and to profitably use it to explore peculiar design layouts, in particular for the case of motion transmission between skew axes (and intersecting axes as a special case). Analytical derivations demonstrate the possibility of involute helicoid profiles (beveloids) transmitting motion between skew axes through line contact and, perhaps more importantly, they lead to the derivation of designs featuring insensitivity of the transmission ratio to all misalignments within relatively large limits. The theoretical developments are confirmed by various numerical examples.


Author(s):  
Rajiv Agrawal ◽  
Natarajan Sridhar ◽  
Gary L. Kinzel

Abstract This paper presents the use of constraint management techniques to design spur and helical gears. The constraints for gear design are presented in a declarative manner such that they can be incorporated in a general Design Shell environment. A declarative representation allows the designer to experiment with a number of different designs and perform “what-if” scenarios. Since spur gears form a subset of helical gears, the mathematical formulation is presented for helical gears only. The analysis of helical gears is based on the AGMA/ANSI Standard 2001-B88.


2021 ◽  
Vol 263 (5) ◽  
pp. 1275-1285
Author(s):  
Joshua Götz ◽  
Sebastian Sepp ◽  
Michael Otto ◽  
Karsten Stahl

One important source of noise in drive trains are transmissions. In numerous applications, it is necessary to use helical instead of spur gear stages due to increased noise requirements. Besides a superior excitation behaviour, helical gears also show additional disadvantageous effects (e.g. axial forces and tilting moments), which have to be taken into account in the design process. Thus, a low noise spur gear stage could simplify design and meet the requirements of modern mechanical drive trains. The authors explore the possibility of combining the low noise properties of helical gears with the advantageous mechanical properties of spur gears by using spur gears with variable tip diameter along the tooth width. This allows the adjustment of the total length of active lines of action at the beginning and end of contact and acts as a mesh stiffness modification. For this reason, several spur gear designs are experimentally investigated and compared with regard to their excitation behaviour. The experiments are performed on a back-to-back test rig and include quasi-static transmission error measurements under load as well as dynamic torsional vibration measurements. The results show a significant improvement of the excitation behaviour for spur gears with variable tip diameter.


2012 ◽  
Vol 215-216 ◽  
pp. 917-920
Author(s):  
Rong Fan ◽  
Chao Sheng Song ◽  
Zhen Liu ◽  
Wen Ji Liu

Dynamic modeling of beveloid gears is less developed than that of spur gears, helical gears and hypoid gears because of their complicated meshing mechanism and 3-dimsional dynamic coupling. In this study, a nonlinear systematic coupled vibration model is created considering the time-varying mesh stiffness, time-varying transmission error, time-varying rotational radius and time-varying friction coefficient. Numerical integration applying the explicite Runge-Kutta formula and the implicit direct integration is used to solve the nonlinear dynamic model. Also, the dynamic characteristics of the marine gear system are investigated.


Author(s):  
Nicolas Voeltzel ◽  
Yann Marchesse ◽  
Christophe Changenet ◽  
Fabrice Ville ◽  
Philippe Velex

This paper investigates the windage power losses generated by helical gears rotating in pure air based on experimental results and a computational fluid dynamic code. It is found that the simulated flow patterns are totally different from those calculated for spur gears and that both tooth face width and helix angle are influential. The windage losses derived from Dawson’s and Townsend’s formulae are critically assessed using computational fluid dynamic results thus highlighting the limits of a unique formulation for accurate windage loss prediction. Finally, an analytical approach is suggested which gives good results providing that the flow rates at the boundaries of the inter-tooth domains can be estimated.


Author(s):  
Xiaogen Su ◽  
Donald R. Houser

Abstract The effect of the reference misalignment including eccentricity and wobble on profile and lead inspection traces is discussed. The relative slopes of the lead traces induced by wobble are used to calculate the magnitude of the wobble. The deviation caused by the wobble is removed from the lead inspection results. This method is theoretically ‘exact’ for spur gears and is approximate for helical gears. Real measurement examples show this method produces a good result with a spur gear and a satisfactory result with a helical gear.


2012 ◽  
Vol 251 ◽  
pp. 111-113
Author(s):  
Yan Gui ◽  
Qi Zhang

Various methods of calculating transmission error in spur and helical gears are used to predict T.E. at the design stage. In order to reduce the driveline noise of the noise excitation mechanism, an advanced algorithm is used to predict and optimize the TE of a gear pair and the system response of specified TE excitation is investigated for the driven tool holder. And the CAD model was then meshed in Hypermesh with designable and non-designable areas. A pair of spur gears were investigated through static and dynamic analysis in detail.


Author(s):  
R. J. Hicks

The paper considers the pros and cons of spur, single, and double helical gearing. A detailed geometric analysis of the basic load capacities of helical and spur gears, respectively, leads to non-dimensional optimum tooth numbers for each type, having a constant ratio to one another irrespective of size and material. Helical gears are shown to require the same volume as spurs but relatively coarser teeth. Consideration of the possible dynamic effects of characteristic errors leads to the conclusion that spur gears are potentially superior for very high speed applications.


1990 ◽  
Vol 112 (4) ◽  
pp. 708-711 ◽  
Author(s):  
Yang Ji-Bin ◽  
Qi Yu-Lin ◽  
Chen Chen-Wen

In this experiment, it was the first time that the center oil film thickness between W-N helical gear tooth profiles has been measured indirectly through measuring the change of gaps of a pair of unloaded involute spur gears mounted on the extended shafts of W-N gear box by means of laser transmission method. During the measurement of every time, it was calibrated separately, so that all errors could be eliminated completely except ones of measuring apparatus. The accuracy of this method has reached 0.1 μm (dynamic) and 0.01 μm (static), respectively. Measurement results were identical with theoretical ones. This method is also suitable for the measurement of center oil film thickness between tooth profiles and deformation of any cylindrical spur and helical gears.


Sign in / Sign up

Export Citation Format

Share Document