Mechanical behavior of cellulosic fiber-incorporated modified fly ash-dispersed polymeric composites

Author(s):  
Bhabatosh Biswas ◽  
Biplab Hazra ◽  
Subhabrata Chakraborty ◽  
Nillohit Mukherjee ◽  
Arijit Sinha

Alkali-treated discontinuous cellulosic fibers (jute and sisal)-based heat-treated silanized fly ash-dispersed hybrid polyester composites were fabricated using a compression molding technique. The morphological features were observed using a scanning electron microscope and a high-resolution transmission electron microscope. The bulk mechanical testing namely, microhardness, tensile, flexural as well as Izod impact was successfully executed. The significant effect of the filler (cellulosic fibers as well as modified fly ash) dispersion within the polymeric matrix with respect to mechanical properties was thoroughly examined in this present investigation.

Author(s):  
R. K. Bennett ◽  
F. R. Winslow

A fractographic study of the uranium-7.5 w/o Nb-2.5 w/o Zr alloy was initiated to gain a better understanding of this relatively new material. Although generally a ductile alloy when properly heat treated and aged, brittleness and cracking were encountered in some worked material, and anomalous behavior was observed in a series of double cantilever beam specimens.The original fractographic studies were performed using standard replica techniques in a transmission electron microscope. Shortly after acquisition of a scanning electron microscope, it was found that this instrument was faster, more direct, and supplied more information concerning the overall fracture surfaces of the alloy than the transmission electron microscope.


Author(s):  
J. D. Hutchison

When the transmission electron microscope was commercially introduced a few years ago, it was heralded as one of the most significant aids to medical research of the century. It continues to occupy that niche; however, the scanning electron microscope is gaining rapidly in relative importance as it fills the gap between conventional optical microscopy and transmission electron microscopy.IBM Boulder is conducting three major programs in cooperation with the Colorado School of Medicine. These are the study of the mechanism of failure of the prosthetic heart valve, the study of the ultrastructure of lung tissue, and the definition of the function of the cilia of the ventricular ependyma of the brain.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Author(s):  
Masayuki Miyoshi

In spite of various attempts, conclusive evidence to explain blood passage in the splenic red pulp does not seem to have been presented. Scanning electron microscope (SEM) observations on the rabbit spleen, originally performed by us, revealed that the sinus was lined by a perforated lattice composed of longitudinally extended rod cells and transverse cytoplasmic processes, and that perforations in the lattice were continuous to the spaces among the stellate reticulum cells of the cord. In the present study the observation was extended to the dog and rat spleens, in which the cord is more developed than in the rabbit in order to clarify the possible differences in the fine structure of the sinus wall. An attempt was also made to examine the development and distribution of macrophage in the blood passage of the red pulp.Spleens were washed and fixed by perfusion with Ringer solution and then with buffered glutaraldehyde. Small tissue cubes were dehydrated with acetone, dried in air and heated with gold. Observations were made by a JEOL SEM Type-3. One air dried tissue cube was cut into small pieces and post fixed with buffered OsO4 for examination under the transmission electron microscope (TEM).


Author(s):  
J. Temple Black

Since its introduction by Fernandez-Moran, the diamond knife has gained wide spread usage as a common material for cutting of thin sections of biological and metallic materials into thin films for examination in the transmission electron microscope. With the development of high voltage E.M. and scanning transmission E.M., microtomy applications will become increasingly important in the preparation of specimens. For those who can afford it, the diamond knife will thus continue to be an important tool to accomplish this effort until a cheaper but equally strong and sharp tool is found to replace the diamond, glass not withstanding.In Figs. 1 thru 3, a first attempt was made to examine the edge of a used (β=45°) diamond knife by means of the scanning electron microscope. Because diamond is conductive, first examination was tried without any coating of the diamond. However, the contamination at the edge caused severe charging during imaging. Next, a thin layer of carbon was deposited but charging was still extensive at high magnification - high voltage settings. Finally, the knife was given a light coating of gold-palladium which eliminated the charging and allowed high magnification micrographs to be made with reasonable resolution.


Author(s):  
J. C. Russ ◽  
E. McNatt

In order to study the retention of copper in cirrhotic liver, rats were made cirrhotic by carbon tetrachloride inhalation twice weekly for three months and fed 0.2% copper acetate ad libidum in drinking water for one month. The liver tissue was fixed in osmium, sectioned approximately 2000 Å thick, and stained with lead citrate. The section was examined in a scanning electron microscope (JEOLCO JSM-2) in the transmission electron mode.Figure 1 shows a typical area that includes a red blood cell in a sinusoid, a disse, and a portion of the cytoplasm of a hepatocyte which contains several mitochondria, peribiliary dense bodies, glycogen granules, and endoplasmic reticulum.


Author(s):  
M. K. Lamvik

When observing small objects such as cellular organelles by scanning electron microscopy, it is often valuable to use the techniques of transmission electron microscopy. The common practice of mounting and coating for SEM may not always be necessary. These possibilities are illustrated using vertebrate skeletal muscle myofibrils.Micrographs for this study were made using a Hitachi HFS-2 scanning electron microscope, with photographic recording usually done at 60 seconds per frame. The instrument was operated at 25 kV, with a specimen chamber vacuum usually better than 10-7 torr. Myofibrils were obtained from rabbit back muscle using the method of Zak et al. To show the component filaments of this contractile organelle, the myofibrils were partially disrupted by agitation in a relaxing medium. A brief centrifugation was done to clear the solution of most of the undisrupted myofibrils before a drop was placed on the grid. Standard 3 mm transmission electron microscope grids covered with thin carbon films were used in this study.


Author(s):  
Shaopeng Hu ◽  
Jianhua Wang ◽  
Zhen Li ◽  
Huei Chen ◽  
Fei Cu ◽  
...  

Gastritis from returning bile is a common disease, but the reason for the disease is not clear. As the pathologic ultrastructure research progresses, it has drawn attention to the ultrastructural change of cells in gastric mucosa by clinical workers. We observed gastric mucosa tissues of 15 patients suffering from gastritis with a transmission electron microscope (TEM) and a scanning electron microscope (SEM). It is the first report in China that fungus exists in the lamina propria of gastric mucosa tissue. The result is as follows.The gastric mucosa tissues of 15 patients suffering from gastritis were acquired by stomachoscopy. Both TEM and SEM specimens were prepared by the usual methods. Under the TEM, the epithelial surface became higher and larger. Mitochondria of the cells were swollen and cristae were disrupted. There were vacuoles in the cells. The nucleus showed disorder, heterochromatin became darker, and nucleolae could be observed.


Author(s):  
W. P. Wergin ◽  
S. Roy ◽  
E. F. Erbe ◽  
C. A. Murphy ◽  
C. D. Pooley

Larvae of the nematode, Steinernema carpocapsae Weiser strain All, were cryofixed and freezesubstituted for 3 days in acetone containing 2% osmium tetroxide according to established procedures. Following chemical fixation, the nematodes were brought to room temperature, embedded in Spurr's medium and sectioned for observation with a Hitachi S-4100 field emission scanning electron microscope that was equipped with an Oxford CT 1500 Cryotrans System. Thin sections, about 80 nm thick, similar to those generally used in conventional transmission electron microscope (TEM) studies were mounted on copper grids and stained with uranyl acetate for 30 min and lead citrate for 5 min. Sections about 2 μm thick were also mounted and stained in a similar fashion. The grids were mounted on an Oxford grid holder, inserted into the microscope and onto a cryostage that was operated at ambient temperature. Thick and thin sections of the larvae were evaluated and photographed in the SEM at different accelerating voltages. Figs. 4 and 5 have undergone contrast conversion so that the images would resemble transmitted electron micrographs obtained with a TEM.


Sign in / Sign up

Export Citation Format

Share Document