Analysis of structural stresses of tracks and vehicle dynamic responses in train–track–bridge system with pier settlement

Author(s):  
Zhaowei Chen ◽  
Wanming Zhai ◽  
Qiang Yin

Pier settlement causes deformation of bridge structures, and further distorts the track structures placed on bridge decks, which may greatly affect the service life of the tracks and safe operation of trains. This study analyzes track stresses and vehicle dynamic responses in train–track–bridge system with pier settlement and determines the pier settlement safe value for high-speed railways with China Railway Track System (CRTS) II slab tracks. First, a detailed train–track–bridge dynamic model is established based on the train–track–bridge dynamic interaction theory. Verified with field experimental results, the model is utilized to calculate the dynamic responses of the vehicle–track–bridge system with different pier settlement values. Finally, the safe value of the pier settlement in the CRTS II slab track railway line is determined according to the limit of the vehicle dynamic indicators and the structural stresses of tracks. The results show that the vertical acceleration of the car body is more sensitive to pier settlement among all the vehicle dynamic indicators. Structural stresses of tracks caused by pier settlement appear at the positions of the pier with settlement and its two adjacent piers. The effect of train loads on the track stresses is much smaller than that of the pier settlement. It is important to adopt the structural stresses of tracks as the evaluation criteria of the pier settlement safe value than the vehicle dynamic indicators. Taking the effects of the bridge pier settlement, the vehicle load, the prestress effect, and the self-weight into consideration, the pier settlement safe value for the high-speed railway lines with the CRTS II slab track is 11.5 mm.

2018 ◽  
Vol 22 (4) ◽  
pp. 919-934 ◽  
Author(s):  
Xun Zhang ◽  
Zhipeng Wen ◽  
Wensu Chen ◽  
Xiyang Wang ◽  
Yan Zhu

With the increasing popularity of high-speed railway, more and more bridges are being constructed in Western China where debris flows are very common. A debris flow with moderate intensity may endanger a high-speed train traveling on a bridge, since its direct impact leads to adverse dynamic responses of the bridge and the track structure. In order to address this issue, a dynamic analysis model is established for studying vibrations of coupled train–track–bridge system subjected to debris flow impact, in which a model of debris flow impact load in time domain is proposed and applied on bridge piers as external excitation. In addition, a six-span simply supported box girder bridge is considered as a case study. The dynamic responses of the bridge and the running safety indices such as derailment factor, offload factor, and lateral wheel–rail force of the train are investigated. Some influencing factors are then discussed based on parametric studies. The results show that both bridge responses and running safety indices are greatly amplified due to debris flow impact loads as compared with that without debris flow impact. With respect to the debris flow impact load, the boulder collision has a more negative impact on the dynamic responses of the bridge and train than the dynamic slurry pressure. Both the debris flow impact intensity and train speed determine the running safety indices, and the debris flow occurrence time should be also carefully considered to investigate the worst scenario.


2020 ◽  
Vol 306 ◽  
pp. 02003
Author(s):  
Haoran Xie ◽  
Bin Yan ◽  
Jie Huang

In order to investigate the vertical dynamic response characteristics of train-track-bridge system on CWR (Continunously Welded Rail) under dynamic load of train on HSR (High-Speed Railway) bridge. Based on the principle of vehicle train-track-bridge coupling dynamics, taking the 32m simply supported bridge of a section of Zhengzhou-Xuzhou Passenger Dedicated Line as an example, the finite element software ANSYS and the dynamic analysis software SIMPACK are used for co-simulation, and bridge model of the steel spring floating slab track and the CRTSIII ballastless track (China Railway Track System) considering the shock absorbing steel spring, the limit barricade and the contact characteristics of track structure layers are established. On this basis, in order to study the dynamic response laws of the design of ballastless track structure parameters to the system when the train crosses the bridge and provide the basis for the design and construction, by studying the influence of the speed of train on the bridge, the damage of fasteners and the parameters of track structure on the train-track-bridge system, the displacement of rail, vertical vibration acceleration and wheel-rail force response performance are analyzed. Studies have shown that: At the train speed of 40 km/h, the displacement and acceleration of the rail and track slab in the CRTSIII ballastless track are smaller than the floating slab track structure, but the floating slab track structure has better vibration reduction performance for bridges. The acceleration of rail, track slab and bridge increases obviously with the increase of train speed, the rail structure has the largest increasement. Reducing the stiffness of fasteners could decrease the vertical acceleration response of the steel spring floating slab track system, the ability to absorb shock can be enhanceed by reducing the stiffness of the fastener appropriately. Increasing the density of the floating slab can increase the vertical acceleration of the floating slab and the bridge, thereby decreasing the vibration amplitude of the system.


Author(s):  
Ye Liu ◽  
Yan Han ◽  
Peng Hu ◽  
C. S. Cai ◽  
Xuhui He

In this study, the influences of wind barriers on the aerodynamic characteristics of trains (e.g. a CRH2 train) on a highway-railway one-story bridge were investigated by using wind pressure measurement tests, and a reduction factor of overturning moment coefficients was analyzed for trains under wind barriers. Subsequently, based on a joint simulation employing SIMPACK and ANSYS, a wind–train–track–bridge system coupled vibration model was established, and the safety and comfort indexes of trains on the bridge were studied under different wind barrier parameters. The results show that the mean wind pressures and fluctuating wind pressures on the trains’ surface decrease generally if wind barriers are used. As a result, the dynamic responses of the trains also decrease in the whole process of crossing the bridge. Of particular note, the rate of the wheel load reductions and lateral wheel-axle forces can change from unsafe states to relative safe states due to the wind barriers. The influence of the porosity of the wind barriers on the mean wind pressures and fluctuating wind pressures on the windward sides and near the top corner surfaces of the trains are significantly greater than the influence from the height of the wind barriers. Within a certain range, decreasing the wind barrier porosities and increasing the wind barrier heights will significantly reduce the safety and comfort index values of trains on the bridge. It is found that when the porosity of the wind barrier is 40%, the optimal height of the wind barrier is determined as approximately 3.5[Formula: see text]m. At this height, the trains on the bridges are safer and run more smoothly and comfortably. Besides, through the dynamic response analysis of the wind–train–track–bridge system, it is found that the installation of wind barriers in cases with high wind speeds (30[Formula: see text]m/s) may have an adverse effect on the vertical vibration of the train–track–bridge system.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaohui Zhang ◽  
Yao Shan ◽  
Xinwen Yang

A model based on the theory of train-track-bridge coupling dynamics is built in the article to investigate how high-speed railway bridge pier differential settlement can affect various railway performance-related criteria. The performance of the model compares favorably with that of a 3D finite element model and train-track-bridge numerical model. The analysis of the study demonstrates that all the dynamic response for a span of 24 m is slightly larger than that for a span of 32 m. The wheel unloading rate increases with pier differential settlement for all of the calculation conditions considered, and its maximum value of 0.695 is well below the allowable limit. Meanwhile, the vertical acceleration increases with pier differential settlement and train speed, respectively, and the values for a pier differential settlement of 10 mm and speed of 350 km/h exceed the maximum allowable limit stipulated in the Chinese standards. On this basis, a speed limit for the exceeding pier differential settlement is determined for comfort consideration. Fasteners that had an initial tensile force due to pier differential settlement experience both compressive and tensile forces as the train passes through and are likely to have a lower service life than those which solely experience compressive forces.


Author(s):  
Hongye Gou ◽  
Wenhao Li ◽  
Siqing Zhou ◽  
Yi Bao ◽  
Tianqi Zhao ◽  
...  

The Lanzhou-Xinjiang High-speed Railway runs through a region of over 500[Formula: see text]km that is amenable to frequent winds. The strong wind and rainfall pose a great threat to the safe operation of high-speed trains. To tackle the aforementioned climate challenges, this paper investigates the dynamic response of the high-speed train-track-bridge coupling system under the simultaneous action of winds and rains for the safe operation of trains. Specifically, there are four main objectives: (1) to develop a finite element model to analyze the dynamic response of the train-track-bridge system in windy and raining conditions; (2) to investigate the aerodynamic loads posed to the train-track-bridge system by winds and rains; (3) to evaluate the effects of wind speed and rainfall intensity on the train-track-bridge system; and (4) to assess the safety of trains at different train speeds and under various wind-rain conditions. To this end, this paper first establishes a train-track-bridge model via ANSYS and SIMPACK co-simulation and the aerodynamics models of the high-speed train and bridge through FLUENT to form a safety analysis system for high-speed trains running on the bridge under the wind-rain conditions. Then, the response of the train-track-bridge system under different wind speeds and rainfall intensities is studied. The results show that the effects of winds and rains are coupled. The rule of variation for the train dynamic response with respect to various wind and rain conditions is established, with practical suggestions provided for control of the safe operation of high-speed trains.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lizhong Jiang ◽  
Xiang Liu ◽  
Tuo Zhou ◽  
Ping Xiang ◽  
Yuanjun Chen ◽  
...  

A nonlinear train-track-bridge system (TTBS) considering the random track irregularity and mass of train is discussed. Based on the Karhunen–Loéve theory, the track irregularity is expressed and input into the TTBS, and the result of random response is calculated using the point estimation method. Two cases are used to compare and validate the applicability of the proposed method, which show that the proposed method has a high precision and efficiency. Then, taking a 7-span bridge and a high-speed train as an example, the calculation results of random response of the nonlinear and linear wheel-rail model are compared, and the results show that for the bridge and rail response, the nonlinear and linear models are almost the same. Finally, comparing the calculated probability distribution results with the test results, it shows that the method can be applied to the prediction of actual response range.


Author(s):  
Dangxiong Wang ◽  
Xiaozhen Li ◽  
Ziyan Wu

To investigate the dynamic performance of the low-to-medium-speed (LMS) maglev train and bridge system under uneven ground settlement, a refined vertical dynamic interaction model of the LMS maglev train–track–bridge system with uneven settlement is proposed. Firstly, the numerical model is verified based on the field test. Secondly, the dynamic performances of the system induced by uneven settlements are numerically analyzed. Furthermore, numerical studies are carried out to investigate the effect of various uneven settlement types, to compare the performances of the two typical bridges, and to assess the contribution of the F-rail in the presence of uneven settlement. The results show that uneven settlement has a significant enlargement effect on the dynamic responses of the car body and levitation module, but a very weak influence on the bridge. Both the patterns of uneven settlement and bridge types significantly affect the dynamic response of the maglev train to various levels. The numerical model excluding the track structure will overestimate the dynamic responses of the levitation module. It is suggested that the dynamic interaction model for the maglev train–track–bridge system be selected to simulate the influence of uneven settlement for better accuracy.


Sign in / Sign up

Export Citation Format

Share Document