A comparative study of the vibration characteristics of railway vehicle axlebox bearings with inner/outer race faults

Author(s):  
Jinhai Wang ◽  
Jianwei Yang ◽  
Yongliang Bai ◽  
Yue Zhao ◽  
Yuping He ◽  
...  

Increasing service time makes the axlebox bearing of railway vehicle vulnerable to develop a fault in inner or outer races, which can cause some serious adverse effects on a railway vehicle’s safe operation. To tackle this problem, we established a railway vehicle vertical-longitudinal dynamic model with inner/outer races faults of axlebox bearing and validated it by experimental data. We utilized the time-synchronous average (TSA) technology to filter the raw signals and studied their vibration features. The results show that the longitudinal vibration features are more sensitive for inner race fault identification, while the vertical vibration features are more suitable for outer race fault identification. For inner race fault identification, the indicator peak-to-peak value (PPV) that increases 1056% relative to the healthy state at the most severe fault performs the best sensitivity. For outer race fault identification, the indicator skewness value (SV) that increases 518% relative to the healthy state at the most severe fault exhibits the best performance. The research work can provide meaningful guidance for accurate diagnosis of axlebox bearing faults of railway vehicles.

2011 ◽  
Vol 52-54 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Hua Ma ◽  
Shi Hui Luo ◽  
Rong Rong Song

Wheel set longitudinal vibration is a self-excited vibration when railway vehicle is running on the track, which is one of the important reasons of wheel tread spalling problem, and will cause the dynamic performance worse of the vehicle. To investigate the happen mechanism of the wheel set longitudinal vibration, the 7 degree of freedoms wheel set longitudinal vibration model which considers the torsion vibration of the wheel axle was set up based on Matlab. From the point of view of frequency and vibration, put forward one kind of forecast method of the happen of wheel set longitudinal vibration. Wheel set longitudinal vibration will lead car body to suffer an impact in the longitudinal direction and this would cause car body tremble and have a big vertical vibration. Take the locomotive which has severe wheel tread spalling problem running on the Kunming meter track for example to test the effect of the wheel set longitudinal vibration theory to solve the wheel tread spalling problem. Solve wheel tread damage from the aspect of dynamic is an evolution method and Wheel set longitudinal dynamic is the extension of the wheel/rail dynamic.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guang-Quan Hou ◽  
Chang-Myung Lee

Fault diagnosis and failure prognostics for rolling element bearing are helpful for preventing equipment failure and predicting the remaining useful life (RUL) to avoid catastrophic failure. Spall size is an important fault feature for RUL prediction, and most research work has focused on estimating the fault size under constant speed conditions. However, estimation of the defect width under time-varying speed conditions is still a challenge. In this paper, a method is proposed to solve this problem. To enhance the entry and exit events, the edited cepstrum is used to remove the determined components. The preprocessed signal is resampled from the time domain to the angular domain to eliminate the effect of speed variation and measure the defect size of a rolling element bearing on outer race. Next, the transient impulse components are extracted by local mean decomposition. The entry and exit points when the roller passes over the defect width on the outer race were identified by further processing the extracted signal with time-frequency analysis based on the continuous wavelet transform. The defect size can be calculated with the angle duration, which is measured from the identified entry and exit points. The proposed method was validated experimentally.


2019 ◽  
Vol 290 ◽  
pp. 08005
Author(s):  
Camil Ion Crăciun ◽  
Cătălin Cruceanu

Determination of longitudinal dynamic forces, size assessment as well as their distribution in the train body is, and will be a subject of global research. As observed from the beginning of the evolution of the railway vehicle and the train itself, the main reason for the occurrence of longitudinal dynamic forces is represented by the differences in inertial forces between the consecutive train vehicles. These inertial forces are influenced by the braking forces developed on each vehicle. The brake with which a railway vehicle is equipped is the pneumatic brake with compressed air. It evacuates the air from the train’s general pipeline, increasing the pressure in the brake cylinders of each vehicle. The brake command and cylinder filling is more delayed on long trains compared to short ones. Thus, the brake can operate in two ways, the fast-action brake and the slow-action brake. In this paper, we aim to highlight the influence of the brake type by the brake cylinder filling characteristic of the dynamic longitudinal reactions. It will be analysed on a simplified train model the magnitude and distribution of longitudinal dynamic forces obtained using both braking systems.


2020 ◽  
Vol 10 (22) ◽  
pp. 8167
Author(s):  
Mădălina Dumitriu ◽  
Dragoș Ionuț Stănică

The theoretical research on means to reduce the vertical vibrations and improve the ride comfort of the railway vehicle relies on a mechanical model obtained from the simplified representation of the vehicle, while considering the important factors and elements affecting the vibration behaviour of the carbody. One of these elements is the anti-yaw damper, mounted longitudinally, between the bogie and the vehicle carbody. The anti-yaw damper reduces the lateral vibrations and inhibits the yaw motion of the vehicle, a reason for which this element is not usually introduced in the vehicle model when studying the vertical vibrations. Nevertheless, due to the position of the clamping points of the anti-yaw damper onto the carbody and the bogie, the damping force is generated not only in the yawing direction but also in the vertical and longitudinal directions. These forces act upon the vehicle carbody, impacting its vertical vibration behaviour. The paper analyzes the effect of the anti-winding damper on the vertical vibrations of the railway vehicle carbody and the ride comfort, based on the results derived from the numerical simulations. They highlight the influence of the damping, stiffness and the damper mounting angle on the power spectral density of the carbody vertical acceleration and the ride comfort index.


1994 ◽  
Vol 116 (2) ◽  
pp. 202-208 ◽  
Author(s):  
E. Kingsbury ◽  
R. Walker

We made an experimental investigation of the motions of the retainer in an instrument ball bearing during stable operation and during squeal. Radial motions of the retainer were measured with two fiber-light probes mounted 90 physical degrees apart. A signal analyzer was used to determine the phasing and frequency content of the probe signals. During squeal, a high-frequency retainer motion was found to be superimposed on the normal retainer ball group rotation rate. This high-frequency motion, which we call whirl, is a rigid-body translation in a circle. Whirl direction is opposite to the race for outer-race rotation, but in the same direction for inner-race rotation. Whirl frequency is approximately proportional to ball spin rate. The observations agree with predictions made from a squeal model based on retainer-to-ball frictional coupling that was originally presented in 1965.


Sign in / Sign up

Export Citation Format

Share Document