Determining track-induced lateral thermal expansion forces on a curved railway track

Author(s):  
Jubair A Musazay ◽  
Allan M Zarembski ◽  
Joseph W Palese

This research studies the development of lateral thermal expansion forces on a curved railway track. The geometric alignment of a railway right of way often requires railway tracks to be curved. This curvature which is usually defined by the radius of curvature or degree of curvature represents a higher level of complexity in the track’s analysis and design process. Particularly, presence of curvature on the track introduces multiple sources of force in the lateral (radial) direction, including, but not limited to, lateral thermal expansion, lateral wheel/rail forces due to centrifugal action, lateral components of vertical loads, bogie hunting and nosing effects of locomotives, and vehicle curving dynamics. Some of these forces are well understood such as centrifugal forces while some are not as well understood, such as lateral thermal expansion forces. To bridge this gap, this research studies the development of track-induced lateral thermal expansion forces on a curved railway track. In this research, the curved track is assumed to be an arbitrary arc section of a circular track and is modeled as an equivalent idealized circular ring for analysis. Owing to its importance, three analytical methods are used to include: 1) Timoshenko thermoelastic stress analysis in cylindrical coordinate system, 2) mechanics of thin wall cylinders and 3) adaptation of a variational calculus formulation method from a previous comparable study. A fourth analysis approach is also introduced using a commercially available finite element analysis package. The results of these analyses are compared through a wide range of parametric studies and are then validated by the finite element analysis. The results of this study showed that the several methods presented in this paper, could be used to approximate thermally induced expansion behavior (pre-buckling) on a curved railway track. While all three techniques are effective, the Timoshenko stress analysis method appears to be the most suitable as it is a direct method that examines the stress build up from the element level and takes into account additional material properties, such as the Poisson effect. The research resulted in a methodology for determining load transfer from thermally induced forces in curved railroad track to the fastener and supporting structure.

2011 ◽  
Vol 55-57 ◽  
pp. 664-669
Author(s):  
Jin Ning Nie ◽  
Hui Wang ◽  
De Feng Xie

According to the situation that the dual-friction drums on the new type towing machine lack stress analysis when designed, the safety is difficult to test and verify. The pull of wire rope in various positions was derived and calculated, so both compressive stress and tangent friction force generated by the pull of wire rope were calculated. The result made by ANSYS software demonstrates the safety of the left drum which suffers from larger loads, structure improvement measures are put forward for the drum.


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


1999 ◽  
Author(s):  
Rebecca Cragun ◽  
Larry L. Howell

Abstract Thermomechanical in-plane microactuators (TIMs) have been designed, modeled, fabricated, and tested. TIMs offer an alternative to arrays of smaller thermal actuators to obtain high output forces. The design is easily modified to obtain the desired output force or deflection for specific applications. The operational principle is based on the symmetrical thermal expansion of variable cross sections of the surface micromachined microdevice. Sixteen configurations of TIMs were fabricated of polysilicon. Finite element analysis models were used to predict the deflection and output force for the actuators. Experimental results were also recorded for all sixteen configurations, including deflections and output forces up to 20 micron and 35 dyne.


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


1979 ◽  
Vol 22 (4) ◽  
pp. 0955-0960 ◽  
Author(s):  
Robert J. Gustafson ◽  
David R. Thompson ◽  
Shahab Sokhansanj

Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


1999 ◽  
Author(s):  
Alex O. Gibson ◽  
Jeffrey L. Stein

Abstract Machine tool spindle bearings are subjected to a large range of axial and radial loads due to the machining process. Further the rotating spindle must be extremely stiff to minimize the cutting tool’s deflection. The high spindle stiffness is achieved by applying a mechanical load to the bearings, the preload. In fixed preload spindles the bearing loads tend to increase with increasing spindle speed due to thermal expansion and it is well established that these thermally induced loads can lead to premature bearing failure. A model of thermally induced bearing load in angular contact bearing spindles is developed that includes an axis-symmetric reduced order finite element model of the heat transfer and thermal expansion within the spindle’s housing and shaft and the bearing and shaft dynamics. Nodal reduction is used in the reduced order model to minimize the number of temperature states and the computational load. The reduced order model’s calculated temperature and bearing load values are shown to closely match experimentally measured values over a wide range of spindle speeds. The paper ends with a parameter variation study which predicts a dramatic decrease in the thermally induced bearing load when silicon nitride balls are substituted for steel balls.


Sign in / Sign up

Export Citation Format

Share Document