Utilization of modal stress approach in random-vibration fatigue evaluation

Author(s):  
Yadong Zhou ◽  
Qingguo Fei ◽  
Shaoqing Wu

Random-vibration fatigue evaluation can be of considerable importance in the design phase of aerospace structures due to the severe dynamic loads in service. This paper presents the utilization of modal stress approach to the issue of structural random-vibration fatigue evaluation. Prognosis of random fatigue hotspots by using stress mode shapes is theoretically demonstrated. A two-step procedure is proposed for computational efficiency. Firstly, modal stress analysis is conducted to locate the fatigue hotspots in a dynamic structure. Secondly, the frequency domain-based approach for random fatigue evaluation is performed at these hotspots, as opposed to the computation of the entire structure as before. The capability of stress mode shapes to locate fatigue hotspots is verified by numerical investigations. The finite element model of a single-lap plate structure containing various opening holes was constructed for case study. Six elements were identified as hotspots by using modal stress distributions. Then, random responses and fatigue evaluation of the entire structure were carried out for verification. Good agreement was observed between the fatigue damage contour and the modal stress distributions, which can indicate that the critical positions predicted by stress mode shapes have good accuracy. The calculation time and storage space can be significantly reduced by means of the proposed evaluation procedure. Therefore, the accuracy and efficiency of utilization of modal stress approach in random fatigue evaluation can be ensured.

2022 ◽  
Vol 167 ◽  
pp. 108516
Author(s):  
Xianjun Pei ◽  
Sandipp Krishnan Ravi ◽  
Pingsha Dong ◽  
Xiangwei Li ◽  
Xiaokun Zhou

1988 ◽  
Vol 110 (2) ◽  
pp. 205-209
Author(s):  
A. V. Singh

This paper presents the random vibration analysis of a simply supported cylindrical shell under a ring load which is uniform around the circumference. The time history of the excitation is assumed to be a stationary wide-band random process. The finite element method and the condition of symmetry along the length of the cylinder are used to calculate the natural frequencies and associated mode shapes. Maximum values of the mean square displacements and velocities occur at the point of application of the load. It is seen that the transient response of the shell under wide band stationary excitation is nonstationary in the initial stages and approaches the stationary solution for large value of time.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


Author(s):  
J. M. Allen ◽  
L. B. Erickson

A NASTRAN finite element analysis of a free standing gas turbine blade is presented. The analysis entails calculation of the first four natural frequencies, mode shapes, and relative vibratory stresses, as well as deflections and stresses due to centrifugal loading. The stiffening effect of the centrifugal force field was accounted for by using NASTRAN’s differential stiffness option. Natural frequencies measured in a rotating test correlated well with computed results. Areas of maximum vibratory stress (fundamental mode) coincided with the three zones of crack initiation observed in a metallographic examination of a fatigue failure. Airfoil stress distributions were found to be significantly different from that predicted by generalized beam theory, especially near the airfoil-platform junction.


Author(s):  
H R Hamidzadeh

An analytical method is adopted to determine modal characteristics of non-linear spinning discs. The disc is assumed to be isotropic and rotating under steady-state conditions. The effects of amplitude and rotating speed on natural frequencies are determined. The developed procedure is also capable of analysing natural frequencies of linear free vibration, which is independent of amplitude. Attention is confined to determine natural frequencies, mode shapes, stress distributions, and critical speeds for different numbers of nodal diameters. The developed procedure does not consider modes of vibration corresponding to nodal circles. Validity of this procedure is verified by comparing some of the computed results with those established for certain cases.


1980 ◽  
Vol 102 (2) ◽  
pp. 391-398 ◽  
Author(s):  
B. Downs

An equivalent mass matrix may be defined, for a segment of a continuous system, as one which retains precisely the dynamic properties of the original segment in discretized form. Dynamic Discretization, which makes use of a particular form of Stodola iteration, progressively generates the equivalent mass matrix in ascending powers of frequency squared, whilst simultaneously generating deformation functions in a similar power series. The method is quasi-static and readily copes with shear deformation, rotary inertia and quite complex segment geometry. Accurate vibration analysis in terms of frequencies, mode shapes and corresponding stress distributions is achieved using an extremely coarse system subdivision for a variety of geometries.


Sign in / Sign up

Export Citation Format

Share Document