An algorithm of pretrained fuzzy actor–critic learning applying in fixed-time space differential game

Author(s):  
Xiao Wang ◽  
Peng Shi ◽  
Howard Schwartz ◽  
Yushan Zhao

Solving space differential game in an unknown environment remains a challenging problem. This article proposes a pretrained fuzzy actor–critic learning algorithm for dealing with the space pursuit-evasion game in fixed time. It is supposed that the research objects are two agents including one pursuer and one evader in space. A virtual environment, which is defined as the known part of the real environment, is utilized for deriving optimal strategies of the pursuer and the evader, respectively. Through employing the fuzzy inference system, a pretrained process, which is based on the genetic algorithm, is designed to obtain the initial consequent set of the pursuer and the evader. Besides, an actor–critic framework is applied to finely learn the suitable consequent set of the pursuer and evader in the real environment. Numerical experimental results validate the effectiveness of the proposed algorithms on improving the ability of the agents to adapt to the real environment.

Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 376 ◽  
Author(s):  
Qiubing Ren ◽  
Mingchao Li ◽  
Shuai Han ◽  
Ye Zhang ◽  
Qi Zhang ◽  
...  

Geochemical discrimination of basaltic magmatism from different tectonic settings remains an essential part of recognizing the magma generation process within the Earth’s mantle. Discriminating among mid-ocean ridge basalt (MORB), ocean island basalt (OIB) and island arc basalt (IAB) is that matters to geologists because they are the three most concerned basalts. Being a supplement to conventional discrimination diagrams, we attempt to utilize the machine learning algorithm (MLA) for basalt tectonic discrimination. A combined MLA termed swarm optimized neural fuzzy inference system (SONFIS) was presented based on neural fuzzy inference system and particle swarm optimization. Two geochemical datasets of basalts from GEOROC and PetDB served as to test the classification performance of SONFIS. Several typical discrimination diagrams and well-established MLAs were also used for performance comparisons with SONFIS. Results indicated that the classification accuracy of SONFIS for MORB, OIB and IAB in both datasets could reach over 90%, superior to other methods. It also turns out that MLAs had certain advantages in making full use of geochemical characteristics and dealing with datasets containing missing data. Therefore, MLAs provide new research tools other than discrimination diagrams for geologists, and the MLA-based technique is worth extending to tectonic discrimination of other volcanic rocks.


Author(s):  
Asogbon Mojisola Grace ◽  
Samuel Oluwarotimi Williams

Credit risk evaluation techniques that aid effective decisions in credit lending are of great importance to the financial and banking industries. Such techniques assist credit managers to minimize the risks often associated with wrong decision making. Several techniques have been developed in the time past for credit risk evaluation and these techniques suffer from one form of limitation or the other. Recently, powerful soft computing tools have been proposed for problem solving among which are the neural networks and fuzzy logic. In this study, a neural network based on backpropagation learning algorithm and a fuzzy inference system based on Mamdani model were developed to evaluate the risk level of credit applicants. A comparative analysis of the performances of both systems was carried out and experimental results show that neural network with an overall prediction accuracy of 96.89% performed better than the fuzzy logic method with 94.44%. Finding from this study could provide useful information on how to improve the performance of existing credit risk evaluation systems.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 6510-6518 ◽  
Author(s):  
Shengyou Xu ◽  
Xin Yang ◽  
Minyou Chen ◽  
Wei Lai ◽  
Yueyue Wang ◽  
...  

2013 ◽  
Vol 706-708 ◽  
pp. 1950-1953
Author(s):  
Wu Kui Zhao ◽  
Cheng Zhang ◽  
Yi Bo Wang

The evaluation of equipment support training is an effective way to improve training efficiency. The main influencing factors of equipment support training are analyzed. Adaptive neural fuzzy inference system (ANFIS) model structure is established and the hybrid-learning algorithm to solve the established model by applying back-propagation and least mean squares procedure is investigated. Then the evaluation model of equipment support training level based on ANFIS is constructed. The training level consistent with the actual training level is achieved by training the proposed model using training data samples, which verifies the correctness and effectiveness of the proposed method. Simulation comparing analysis using the proposed method and BP neutral network is conducted respectively. The superiority of the proposed method is verified by simulation results, which provides an effective method for equipment support training evaluation.


2012 ◽  
Vol 22 (06) ◽  
pp. 1250028 ◽  
Author(s):  
K. SUBRAMANIAN ◽  
S. SURESH

We propose a sequential Meta-Cognitive learning algorithm for Neuro-Fuzzy Inference System (McFIS) to efficiently recognize human actions from video sequence. Optical flow information between two consecutive image planes can represent actions hierarchically from local pixel level to global object level, and hence are used to describe the human action in McFIS classifier. McFIS classifier and its sequential learning algorithm is developed based on the principles of self-regulation observed in human meta-cognition. McFIS decides on what-to-learn, when-to-learn and how-to-learn based on the knowledge stored in the classifier and the information contained in the new training samples. The sequential learning algorithm of McFIS is controlled and monitored by the meta-cognitive components which uses class-specific, knowledge based criteria along with self-regulatory thresholds to decide on one of the following strategies: (i) Sample deletion (ii) Sample learning and (iii) Sample reserve. Performance of proposed McFIS based human action recognition system is evaluated using benchmark Weizmann and KTH video sequences. The simulation results are compared with well known SVM classifier and also with state-of-the-art action recognition results reported in the literature. The results clearly indicates McFIS action recognition system achieves better performances with minimal computational effort.


Sign in / Sign up

Export Citation Format

Share Document