Application of blade tip shroud brush seal to improve the aerodynamic performance of turbine stage

Author(s):  
Dengqian Ma ◽  
Jun Li ◽  
Yuanqiao Zhang ◽  
Zhigang Li ◽  
Xin Yan ◽  
...  

The blade tip shroud brush seal is applied to replace the labyrinth seal for the aerodynamic performance improvement of turbine stage. The leakage flow characteristics of the brush seal are numerically predicted by using the Reynolds-Averaged Navier–Stokes equations and non-linear Darcian porous medium model. The numerical leakage flow rate of the brush seal is in well agreement with the experimental data. The last and first long teeth of the labyrinth seal were designed to bristle pack named as the postposed and preposed brush seals based on the 1.5 turbine stage. The leakage flow rate and aerodynamic performance of the turbine stage with blade tip shroud labyrinth seal and brush seal are numerically investigated. The effect of the sealing clearance between bristle pack and tip shroud on the aerodynamic performance of turbine stage is conducted which ranged from 0 mm to 0.4 mm. The axial deflection of the bristle pack is analyzed with consideration of the aerodynamic forces and contact frictional force. The obtained results show that the leakage flow rate of the tip shroud brush seals with bristle tip 0.4 mm clearance which decreases by up to 18% in comparison with the labyrinth seal, and the aerodynamic efficiency increases by 0.6%. Compared to the tip labyrinth seal, tip shroud brush seals can decrease the relative deflection angle of exit flow. This flow behavior results in reducing the mixing loss between the tip leakage flow and mainstream. The similar axial deflection of the bristle pack for two kinds of brush seals is observed at the same sealing clearance. The deflection of the bristle pack under the function of the aerodynamic forces is protected by the backing plate. This work provides the theoretical basis and technical support for the brush seal application in the turbine industries.

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Dengqian Ma ◽  
Yuanqiao Zhang ◽  
Zhigang Li ◽  
Jun Li ◽  
Xin Yan

Abstract To accurately predict the leakage flow and resistance characteristics of brush seals, the multiblock structured mesh and the mesh motion technique are applied to the three-dimensional (3D) staggered tube bundle model of brush seals. The multiblock structured mesh can easily add nodes and set boundary layers in the interbristle gap between adjacent bristles, which can ensure good mesh quality (orthogonal angle and expansion ratio). The mesh motion technique realizes the overall axial compactness of the bristle pack. The effects of pressure ratio Rp, sealing clearance c, and bristle pack compactness on the leakage flow and resistance characteristics are investigated. To analyze the aerodynamic resistance of the brush seals, Euler number (Eu) is applied in this study. The numerical results are in good agreement with the experimental data. Thus, the accuracy of the presented numerical method is validated. For the contacting brush seal, ΔSx, i has a significant effect on the leakage flow rate reduction. For the clearance brush seal, ΔSx, i has little effect on the leakage flow rate reduction. The leakage flow passing through the sealing clearance keeps almost constant. As for aerodynamic resistance, the presence of the sealing clearance can effectively convert the pressure energy of the leakage flow into the kinetic energy. As a result, the leakage flow velocity exiting the bristle pack of the clearance brush seal is 1.5 to 2.0 times larger than that of the contacting brush seal. Although the existence of the sealing clearance obviously increases the leakage flow rate, it effectively reduces the aerodynamic forces acting on the bristles. The developed numerical approach based on the three-dimensional staggered tube bundle model and multiblock structured mesh can serve as a technical method for analysis of the sealing mechanisms of brush seals.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Lingzi Wang ◽  
Jianmei Feng ◽  
Mingfeng Wang ◽  
Zenghui Ma ◽  
Xueyuan Peng

In the reciprocating labyrinth piston compressor, the characteristic of the internal leakage is crucial for the leakage management and performance improvement of the compressor. However, most of the published studies investigated the rotor-stator system, and those who study the reciprocating piston-cylinder system basically focus on the effects of the geometrical parameters. These conclusions could not directly be applied to predict the real-time leakage flow rate through the labyrinth seal because of the fast reciprocating motion of the piston, which will cause continually pressure change in two compression chambers, and then the pressure fluctuation will affect the flow through the labyrinth seal. A transient simulation model employing the multiscale dynamic mesh, which considers the effect of the reciprocating motion of the piston in the cylinder, is established to identify the characteristics of the internal leakage. This model was verified by a specially designed compressor, and the influence of various parameters was analyzed in detail. The sealing performance decreased linearly with the increase in the pressure ratio, and higher pressure inlet leads to higher leakage flow under the same pressure ratio. The labyrinth seal performance positively correlated to the increase of the rotational speed. Leakage characteristics of five working mediums were carried out, and the results indicated that the relative leakage decreased with an increase in the relative molecular mass. From this study, the realistic internal leakage flow rate under different operating parameters in the reciprocating labyrinth piston compressor could be predicated.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Zhenping Feng

Effects of partition wall type, partition wall number and cavity depth on the leakage and rotordynamic characteristics of the pocket damper seal (PDS) were numerically investigated using a presented 3D transient computational fluid dynamics (CFD) method based on the multifrequency elliptical whirling orbit model. The accuracy and availability of this transient CFD method and the multifrequency elliptical whirling orbit model were demonstrated with the experimental data of the experimental eight-bladed fully partitioned pocket damper seal (FPDS). The leakage flow rates and frequency-dependent rotordynamic coefficients of PDS were computed for two types of partition wall (namely conventional PDS and fully partitioned PDS), four partition wall numbers including the labyrinth seal (no partition wall) and six cavity depths including the plain smooth seal (zero cavity depth) at operational conditions with or without inlet preswirl and 15,000 rpm rotational speed. The numerical results show that the FPDS has the similar leakage performance and more superior stability capacity than the conventional PDS. The FPDS possesses slightly larger leakage flow rate (∼2.6–4.0% larger) compared to the labyrinth seal. Eight is a preferable value for the partition wall number to gain the best leakage performance of the FPDS with the least manufacturing cost. The FPDS possesses significantly larger stiffness and damping than the labyrinth seal. Increasing partition wall number results in a significant increase in the direct stiffness but limited desirable effect on the effective damping. The FPDS possesses the lowest leakage flow rate when the cavity depth is about 2.0 mm. Compared to the plain smooth seal, the FPDS possesses larger positive direct stiffness and significantly less direct damping and effective damping. Increasing cavity depth results in a significant decrease in the stabilizing direct damping and the magnitude of the destabilizing cross-coupling stiffness. H= 3.175 mm is a preferable value of the cavity depth for which the effective damping of the FPDS is largest, especially for the concerned frequencies (80–120 Hz) where most multistage high-pressure centrifugal compressors have stability problem.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Weihang Li ◽  
Shaowen Chen ◽  
Hongyan Liu ◽  
Zhihua Zhou ◽  
Songtao Wang

Abstract Labyrinth seals on both rotor casing and blade tip as an effective method to control the leakage flowrate of the shroud and improve aerodynamic performances in a transonic turbine stage are investigated in this study. Compared to the case without the labyrinth seal structure, the cases with three different types of sealing teeth have been shown to reduce significantly the tip leakage flow by computational simulations. The double-side sealing teeth case reduces the leakage flowrate mleakage/mpassage from 3.4% to 1.3% and increases the efficiency by 1.4%, which is the maximum efficiency improvement of all cases. The sealing structures increase the loss inside the shroud while reducing the momentum mixing between shroud leakage flow and mainstream. Therefore, the circumferential distribution of leakage velocity is changed, as well as the distribution of high-loss zones at turbine outlet. Furthermore, the leakage-vortex loss, which is associated with the blockage effect of sealing structure to the tip leakage flow, gains more improvement than the passage-vortex at the rotor outlet section in double-side seal case. In addition, it has also been found that with a larger gap at tip, the double-side seal has better effects of reducing the leakage flow and improving the aerodynamic performance in the transonic turbine stage.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 705
Author(s):  
Seung Il Baek ◽  
Joon Ahn

A straight-through labyrinth seal is one of the most popular non-contacting annular seals through which energy dissipation by turbulence viscosity interaction is achieved with a series of teeth and cavities. The geometric parameters of the straight-through labyrinth seal, such as clearance, tooth width, tooth height, cavity width, and tooth inclination angle, affect its performance. The space for installing a labyrinth seal in turbomachinery is limited, and so it is important to optimize its geometry for a fixed axial length in order to minimize the leakage flow rate and the discharge coefficient. The objective of the current study is to understand the effects of changing the geometric parameters of the seal on the leakage flow rate and the discharge coefficient, and to determine the optimized geometry for a fixed axial length. When the whole axial length is fixed, the most effective way to decrease the discharge coefficient is to reduce the cavity width by increasing the number of cavities. However, if the number of cavities is too high, the beneficial effect of more cavities can be reversed. The results of this study will help turbomachinery manufacturers to design a more efficient labyrinth seal. Numerical simulations of leakage flow for the straight-through labyrinth seal were carried out using Reynolds-Averaged Navier–Stokes (RANS) models, and the results for their discharge coefficients and pressure distributions were compared to previously published experimental data.


Author(s):  
Sivakumar Subramanian ◽  
A. S. Sekhar ◽  
B. V. S. S. S. Prasad

A computational methodology is proposed to predict the running clearance of a six-tooth straight-through rotating labyrinth seal numerically by taking into account both the centrifugal and thermal growths. Four different angular velocities ranging from 0 to 3000 rad/s are chosen to study the influence of rotation on the leakage flow rate. The detailed leakage flow fields and the structural deformations are presented. Further, different pressure ratios in the range of 1.1 to 2.5 have been investigated for a wide range of initial clearances. The methodology is validated against the available data in the literature. It is found out that there is a significant reduction in leakage flow rate by incorporating the radial growth for a particular operating condition. However, for a given initial clearance, the rotation has negligible effect on the reduction in the leakage flow rate, except at pressure ratios lower than 1.7. Further; the rotation has more prominent effect for smaller clearance values.


Author(s):  
Jun Li ◽  
Xin Yan ◽  
Zhenping Feng

Labyrinth seals represent an important flow element in the sealing equipment of modern turbomachinery industries. The straight-through and stepped labyrinth seal are widely used in modern steam turbine due to their comparable simple structure and low manufactured costs. The influence of pressure ratio and fin pitch on the leakage flow characteristics of the straight-through and stepped labyrinth seals is numerically determined. The pressure ratio is defined as the outlet static pressure divided by the inlet total pressure. The fin pitch varied in the fixed axial distance of the labyrinth seal. The geometries investigated represent designs of the straight-through and stepped labyrinth seal typical for modern steam turbines. The leakage flow fields in the high rotating straight-through and stepped labyrinth seals are obtained by the Reynolds-Averaged Navier-Stokes solution using the commercial software FLUENT with the fixed seal clearance and fins geometrical structure. The effect of the rotational axis is also taken into account in numerical computations. Numerical simulations covered a range of pressure ratio and fin pitch for the straight-through and stepped labyrinth seals. Dimensionless discharge coefficients, describing the sealing performance, are calculated from the simulation results. The numerical results show that pressure ratio and fin pitch both affects the sealing performance with the fixed seal clearance and fin geometrical structure. The leakage flow rate decreases with the decreasing fin pitch for both the straight-through and stepped labyrinth seal at the fixed pressure ratio. Furthermore, the leakage flow rate decreases with the increasing pressure ratio at the fixed fin pitch for two kinds of labyrinth seals in the present study. This research provides technical support for improved design of labyrinth seals in turbomachinery.


Sign in / Sign up

Export Citation Format

Share Document