Optimization of a vacuum cleaner fan suction and shaft power using Kriging surrogate model and MIGA

Author(s):  
Soheil Almasi ◽  
Mohammad Mahdi Ghorani ◽  
Mohammad Hadi Sotoude Haghighi ◽  
Seyed Mohammad Mirghavami ◽  
Alireza Riasi

Optimization of vacuum cleaner fan components is a low-cost and time-saving solution to satisfy the increasing requirement for compact energy-efficient cleaners. In this study, surrogate-based optimization technique is used and for the first time it is focused on maximization of Airwatt parameter, which describes the fan suction power, as an objective function (Case II). Besides, the shaft power is minimized (Case I) as another optimization target in order to reduce the power consumption of the vacuum cleaner. 11 geometrical variables of 3 fan components including impeller, diffuser and return channel are selected as the optimization design variables. 80 training points are distributed in the sample space using Advanced Latin Hypercube Sampling (ALHS) technique and the outputs of sample points are calculated by means of CFD simulations. Kriging and RSA surrogate models have been fitted to the outputs of the sample space. Through coupling of constructed Kriging models and Multi-Island Genetic Algorithm (MIGA), the optimal design for each of the optimization cases is presented and evaluated using numerical simulations. A 20.22% reduction in shaft power in Case I and an improvement of 27.73% in Airwatt in Case II have been achieved as the overall results of this study. Despite achieving goals in both optimization cases, a slight decrease in Airwatt in Case I (−6.20%) and a slight increase in shaft power in Case II (+4.82%) are observed relative to primary fan. Furthermore, the Analysis of Variance (ANOVA) determines the importance level of design variables and their 2-way interactions on the objective functions. It was concluded that geometrical parameters related to all of the fan components must be considered simultaneously to conduct a comprehensive optimization. The reasons of enhancement in optimal cases compared with the reference design have been further investigated by analysis of the fan internal flow field. Post-processing of the CFD results demonstrates that the applied geometrical modifications cause a more uniform flow through the flow passages of the optimal fan components.

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4120
Author(s):  
Longyan Wang ◽  
Stephen Ntiri Asomani ◽  
Jianping Yuan ◽  
Desmond Appiah

This paper presents a multi-objective optimization strategy for pump-as-turbines (PAT), which relies on one-dimensional theory and analysis of geometrical parameters. In this strategy, a theoretical model, which considers all possible losses incurred (mainly by the components of pipe inlet, impeller and volute), has been put forward for performance prediction of centrifugal pumps operating as turbines (PAT). With the established mathematical relationship between the efficiency of PAT (both at pump and turbine mode) and the impeller controlling variables, the geometric optimization of the PAT impeller is performed with constant rotational speed. Specifically, the optimization data consist of 50 sets of impellers generated from Latin Hypercube Sampling method with its corresponding efficiencies calculated. Subsequently, the pareto-based genetic algorithm (PBGA) was adopted to optimize the geometic parameters of the impellers through the theoretical model. To validate the theoretical optimization results, the high-fidelity Computational Fluid Dynamics (CFD) simulation and the experimental data are employed for comparison of the PAT performance. The findings show that the efficiencies of both the pump and PAT optimized variables increased by 0.27% and 16.3% respectively under the design flow condition. Based on the one-dimensional theoretical optimization results, the geometry of the impeller is redesigned to suit both pump and PAT mode operations. It is concluded that the chosen design variables (b2, β1, β2, and z) have a significant impact on the PAT efficiency, which demonstrates that the optimization scheme proposed in this study is practicable.


Author(s):  
Liu He ◽  
Peng Shan

Integrating a genetic algorithm code with a response surface methodology code based upon the artificial neural network model, this paper develops an optimization system. By introducing a quasi-three dimensional through-flow design code and a design code of axial compressor airfoils with camber lines of arbitrary shape, and involving a three-dimensional computational fluid dynamics solver, this paper establishes a numerical aerodynamic optimization platform for the three-dimensional blades of axial compressors. The optimization in this paper mainly has four features. First, it applies the conventional inverse design method instead of the common computer aided design parameterization method to generate a three-dimensional blade. Second, it chooses aerodynamic parameters with physical meaning as optimization design variables instead of purely geometrical parameters. Third, it presents a stage-by-stage optimization strategy about the multistage turbomachinery optimization. Fourth, it introduces the visual sensitivity analysis method into optimization, which can adjust variation ranges of variables by analysing how great the variables influence the objective function. The above techniques were applied to the redesign of a single rotor row and two double-stage axial fans separately. The departure angles and work distributions in the inverse design were taken as design variables separately in optimizations of the single rotor and double-stage fans, and they were parametrically represented by means of Be´zier curves, whose parameters were used as the optimization variables in the practical operation. The three investigated examples elucidate that not only the techniques mentioned above are appropriate and effective in engineering, but also the design guidance for similar inverse design problems can be obtained from the optimization results.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yuqin Wang ◽  
Xinwang Huo

In order to improve the hydraulic performance of the centrifugal pump, based on the original model, the optimization mathematical model with the four indexes head, efficiency, shaft power, and pump net positive suction head as objective function was established, and the multiobjective optimization design of the centrifugal pump was carried out by orthogonal test. Based on the L1644 orthogonal table, 16 sets of orthogonal test schemes were made by selecting the four parameters impeller outlet width, blade inlet angle, blade outlet angle, and cape angle; the flow field numerical simulation was carried out by computational fluid dynamics technique; and the influence order of geometric parameters on optimization indexes was obtained by range analysis. The weight of each test factor on the optimization index was calculated by weight matrix, and a set of optimal schemes was obtained. Based on the external characteristic experimental bench of the IH 65-60-190 chemical centrifugal pump, the simulation values and test values of the prototype pump and the optimization pump were obtained under different working conditions. Under the rated flow, the head was reduced by 17.00%, the efficiency was increased by 9.14%, the shaft power was reduced by 21.50%, the pump net positive suction head was reduced by 16.69%, the curve hump was eliminated, the performance of centrifugal pump was improved, and the feasibility of the weight matrix optimization method was verified. The particle image velocimetry measurement system was used to measure the relative velocity of the internal media in the centrifugal pump. The results showed that the optimization pump had no obvious “jet-wake” flow structure, its maximum velocity was less than the prototype pump, the area of low-speed zone was larger than the prototype pump, the efficiency of the centrifugal pump was improved, and the shaft power and pump net positive suction head were reduced. The reason of the head decrease was analyzed from the internal flow situation, and the accuracy of the design optimization process was proved.


Author(s):  
Jun-Won Suh ◽  
Jin-Hyuk Kim ◽  
Young-Seok Choi ◽  
Won-Gu Joo ◽  
Kyoung-Yong Lee

Multiphase pumps are core equipment for offshore plant industry. They are utilized in diverse areas. According to a report about the tendency of multiphase pumps for offshore plant, a helico-axial pump is the most preferred. A helico-axial pump with advanced technologies is widely known to have large handling capacity and operability even at high GVF ranges. However, its disadvantage is that its mechanical efficiency is lower than other multiphase pumps. Because of this, a numerical optimization was performed in this study to enhance the hydraulic performance of multiphase pumps. Before numerical optimization, reliability verification of numerical analysis for single-phase and multiphase flow was carried out. To perform a single objective optimization for high efficiency, design variables and ranges were selected. The single objective optimization was conducted for both impeller and diffuser. The objective function was evaluated at design points using Latin-hypercube sampling, one experiment technique, in design ranges. The performance of the experiment sets was evaluated using advanced computational fluid dynamics. After that, the response surface of a second-order polynomial function which was produced based on the performance evaluation results was used to find the optimal point. The results showed remarkable increases in a higher performance level than the base model. The reason for performance improvement was analyzed through comparison of the internal flow field. Additionally, numerical results were compared to results of performance evaluation through experiment.


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 163 ◽  
Author(s):  
Xinqiang Liu ◽  
Weiliang He

Class function/shape function transformation (CST) is an advanced geometry representation method employed to generate airfoil coordinates. Aiming at the morbidity of the CST coefficient matrix, the pivot element weighting iterative (PEWI) method is proposed to improve the condition number of the ill-conditioned matrix in the CST. The feasibility of the PEWI method is evaluated by using the RAE2822 and S1223 airfoil. The aerodynamic optimization of the S1223 airfoil is conducted based on the Isight software platform. First, the S1223 airfoil is parameterized by the CST with the PEWI method. It is very significant to confirm the range of variables for the airfoil optimization design. So the normalization method of design variables is put forward in the paper. Optimal Latin Hypercube sampling is applied to generate the samples, whose aerodynamic performances are calculated by the numerical simulation. Then the Radial Basis Functions (RBF) neural network model is trained by these aerodynamic performance data. Finally, the multi-island genetic algorithm is performed to achieve the maximum lift-drag ratio of S1223. The results show that the robustness of the CST can be improved. Moreover, the lift-drag ratio of S1223 increases by 2.27% and the drag coefficient decreases by 1.4%.


2019 ◽  
Vol 9 (7) ◽  
pp. 1437
Author(s):  
Yong-Sang Shin ◽  
Hyo-Jun Eun ◽  
Yong-Ju Chu ◽  
Seung-Yop Lee

Computer-aided engineering (CAE) tools play an indispensable role in the vehicle development process. However, it is difficult to accurately predict the relationships and behavior of automotive bodies in vehicle crashes owing to high-order nonlinearity and numerous design variables of the automotive body structure. In this study, clustering and pattern recognition techniques were used to develop a novel optimization design of an automotive body considering roof crushing by vehicle rollover. The large-scale data were clustered to find the strong and weak clusters, and new response surface models were acquired by clustering analysis to achieve better performance than the response surface model of traditional optimization. For an efficient robust design, clusters with weak performance were excluded from the optimum solution. Finally, it was confirmed that the solutions by the proposed optimization technique were better than those obtained by the traditional optimum method based on a comparative analysis by various cluster combinations.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 747 ◽  
Author(s):  
Jin-Hyuk Kim ◽  
Sang-Bum Ma ◽  
Sung Kim ◽  
Young-Seok Choi ◽  
Kwang-Yong Kim

This paper handles a hybrid multiple optimization technique to concurrently enhance hydraulic efficiency and decrease unsteady radial forces resulting from fluid-induced vibration of a single-channel pump for wastewater treatment. A single-channel impeller and volute was optimized systematically by using a hybrid particle swarm optimization and genetic algorithm coupled with surrogate modeling. Steady and unsteady Reynolds-averaged Navier–Stokes analyses were conducted to optimize the internal flow path in the single-channel pump. Design variables for controlling the internal flow cross-sectional area of the single-channel impeller and volute in the single-channel pump were chosen to concurrently optimize objective functions with hydraulic efficiency and the unsteady radial forces resulting from impeller–volute interaction. The optimization results clearly showed that the arbitrary cluster optimum design considerably enhanced hydraulic efficiency and decreased the unsteady radial forces concurrently, compared to the reference design. Finally, the hydraulic performance of the optimized prototype model was verified experimentally. Then, it was proved that the proposed technique is a practical tool for designing a single-channel pump.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1170
Author(s):  
Sang-Bum Ma ◽  
Sung Kim ◽  
Jin-Hyuk Kim

This paper deals with three-objective optimization, using machine-learning-based surrogate modeling to improve the hydraulic performances of a two-vane pump for wastewater treatment. For analyzing the internal flow field in the pump, steady Reynolds-averaged Navier-Stokes equations were solved with the shear stress transport turbulence model as a turbulence closure model. The radial basis neural network model, which is an artificial neural network, was used as the surrogate model and trained to improve prediction accuracy. Three design variables related to the geometry of blade and volute were selected to optimize concurrently the objective functions with the total head and efficiency of the pump and size of the waste solids. The optimization results obtained by using the model showed highly accurate prediction values, and compared with the reference design, the optimum design provided improved hydraulic performances.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


Sign in / Sign up

Export Citation Format

Share Document