Investigation of the axial force on a varying-speed centrifugal pump impeller

Author(s):  
Faye Jin ◽  
Ran Tao ◽  
Zhicong Wei ◽  
Yanzhao Wu ◽  
Ruofu Xiao

Centrifugal impeller has high efficiency but obvious axial force problems because of the axial-to-radial flow direction change. It is easy to cause the over loading of thrust bearing and damage shaft system. Especially in varying-speed centrifugal pumps, the mechanism, characteristics, and influence of impeller axial force is complex. Therefore, experimental and numerical studies are conducted to resolve these problems in this case. The impeller axial force is comparatively investigated by analyzing zonal components, visualizing internal flow, and resolving pressure attenuation law in clearances. This study provides a new test scheme based on force sensors for measuring the impeller axial force. The results show that the variation tendency of impeller axial force is similar to that of pump head. Flow patterns show that streamline-rotation angle decreases with the increase of flow rate in clearances. As the key factor affecting impeller axial force, the static pressure distribution in the clearances can be divided into specific variation stages to specify the mechanism. Specially in this varying-speed case, the blade axial force shifts from positive to negative with the decrease of rotation speed from high to low. This study provides a good reference for solving the axial force problems for centrifugal pumps.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Li ◽  
Xiaofan Zhao ◽  
Weiqiang Li ◽  
Weidong Shi ◽  
Leilei Ji ◽  
...  

Changing the blade outlet width is an important method to adjust the performance curves of centrifugal pumps. In this study, three impellers with different blade outlet widths in an engine cooling water pump (ECWP) were numerically simulated based on ANSYS-CFX software. Numerical calculation reliability was validated based on the comparison between simulation results and experimental datum. As the blade outlet width increases, from the performance curves, the investigated ECWP head increases gradually; and the best efficiency point (BEP) offsets to larger flow rate; and the high efficiency region (HER) is becoming larger; and the critical cavitation pressure of the investigated ECWP at BEP increases, which indicates that the cavitation performance at BEP became worse. Compared with the internal flow field, we find vortex appears mainly in the blade passage near the tongue and volute outlet, and the region of the low static pressure is located in the blade inlet suction surface, and impeller inlet and outlet are the regions of high turbulence kinetic energy. Meanwhile, at the same flow rate, with the increase of blade outlet width, the areas of vortex and low static pressure become obvious and bigger.


Author(s):  
Yiyun Wang ◽  
Ji Pei ◽  
Shouqi Yuan ◽  
Wenjie Wang

Two-stage split case centrifugal pumps play an important role in large flow rate and high lift water transfer situations. To investigate the influence of baffles in between stages on the performance and internal flow characteristics, the unsteady simulations for the prototype pump were carried out by solving the three-dimensional Reynolds-averaged Navier-Stokes equations with a shear stress transport (SST) turbulence model. The structured grids were generated for the whole flow passage. The calculated performance results were verified by the experimental measurements. The entropy production method based on numerical simulation was applied to analyze the distribution and mechanism of flow losses. The results show that the turbulence dissipation is the dominant flow loss, and the viscous dissipation can be neglected. The baffles can reduce the turbulence dissipation power obviously and can improve the hydraulic efficiency by maximum 5%, especially under QBEP and over-load conditions. The baffles have the greatest effect on the hydraulic losses in the double suction impeller., because they change the flow characteristics in the channels between the first stage impeller and the double suction impeller, affecting the inflow condition dramatically for the impeller. The study can give a reference to optimize the design of the two-stage split case centrifugal pump for high efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei Dong ◽  
Diyi Chen ◽  
Jian Sun ◽  
Yan Dong ◽  
Zhenbiao Yang ◽  
...  

The balancing holes in centrifugal pumps with seals mounted in both suction and discharge sides are one of the approaches used by pump manufacturers to reduce the axial thrust. The balance hole diameter directly affects the axial force of the centrifugal pump. The flow characteristics in the balance chamber are closely related to the balance hole diameter. However, research is not very clear on the internal flow of the balanced chamber, due to the small axial and radial sizes and the complicated flow conditions in the chamber. In this paper, we analyzed the influence of the balance hole diameter on the liquid leakage rate, flow velocity, and vortex motion in the balance chamber. The results indicated that when the balance hole diameter was lower than the design value, the volume flow rate of leakage flow was proportional to the diameter. The liquid flow rate and vortex distribution rules in the balance chamber were mainly associated with the coeffect of radial leakage flow in the rear sealing ring interval and the axial balance hole leakage flow. The research has revealed the mechanisms of leakage flow of the balance chamber in the centrifugal pump and that this is of great significance for accurate calculation and balancing of the axial force.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Neeta A. Mandhare ◽  
K. Karunamurthy ◽  
Saleel Ismail

Centrifugal pumps are one of the significant consumers of electricity and are one of the most commonly encountered rotodynamic machines in domestic and industrial applications. Centrifugal pumps operating at off-design conditions are often subject to different periodic flow randomness, which in turn hampers functionality and performance of the pump. These limitations can be overcome by modification in the conventional design of different components of a centrifugal pump, which can assuage flow randomness and instabilities, reconstitute flow pattern and minimize hydraulic flow losses. In this article, flow vulnerabilities like pressure and flow inconsistency, recirculation, boundary layer separation, adverse rotor–stator interaction, and the effects on operation and performance of a centrifugal pump are reviewed. This article also aims to review design modification attempts made by different researchers such as impeller trimming, rounding, geometry modification of different components, providing microgrooves on the impeller and others. Based on the findings of this study, it is concluded that some design modifications of the impeller, diffuser, and casing result in improvement of functionality, efficiency, and reduction in pressure fluctuations, flow recirculation, and vibrations. Design modifications should improve the performance without hampering functionality and useful operational range of the pump. Considerable research is still necessary to continue understanding and correlating flow physics and design modifications for the pump impeller, diffuser, and casing.


Author(s):  
Jinfeng Zhang ◽  
Ye Yuan ◽  
Shouqi Yuan ◽  
Weigang Lu ◽  
Jianping Yuan

For a low specific speed centrifugal pump with the requirement of high efficiency of 68% and non-overload power characteristics, series experimental studies, by matching 9 volutes with 19 impellers were done. By combining the former research results about the splitters and the non-overload theory in centrifugal pump, the theoretical conditions to achieve the property of non-overload in a centrifugal pump with splitters was analyzed, and formulas to estimate the maximum shaft power and its position are derived. Based on the requirement of high efficiency and non-overload, blade outlet angle β2, blade outlet width b2, volute throat are Ft and the inlet diameter of splitters Di were chosen with three levels to design a normal L9 (34) orthogonal test scheme. After the optimized design scheme was determined, and corresponding test was done also, it demonstrates that the experiment purpose was achieved and the design method to combine the splitters and non-overload theory is reasonable, which can get the property of high efficiency and non-overload. A BP artificial neural network (BPANN) model was built to predict the efficiency and head of centrifugal pumps with splitters in MATLAB toolbox. Eighty five groups of test results were used to train and test the network model, where the Levenberg–Marquardt algorithm was adopted to train the neural network model. Five parameters Q, Z, β2, Di, b2 were chosen as the input layer parameters, η and H were the output factors. Through the analysis of prediction results, the conclusion was got that, the accuracy of the BP ANN is good enough for performance prediction. And the BP ANN can be used for assisting design of centrifugal pumps with splitters, which can shorten research time and cost.


Author(s):  
Takaharu Tanaka

Centrifugal pump is a typical turbomachinery, which transfers mechanical energy to hydraulic energy through the rotational motion of impeller blades. It is commonly used and generally operated at a very high efficiency. Therefore, it would seem that theoretical discussion of performance and experimental observations of internal flow conditions inside the pump should be fully understood by now. However, it appears that neither the basic expressions nor the theoretical design methods are that clear. For example, the most fundamental definition of pump head, which is the most important equation in pump textbooks, is not often well explained. The purpose of this oral presentation is to share preliminary results of on-going studies on the energy transfer in centrifugal pumps.


2014 ◽  
Vol 44 (1) ◽  
pp. 105-110
Author(s):  
L. ZHOU ◽  
W. D. SHI ◽  
L. BAI ◽  
W. G. LU ◽  
W. LI

 In the operation process of centrifugal pumps, especially in multi-stage pumps, axial force is one of the main factors which affect the pump safety and reliability. This paper presents the axial force study in a deep-well centrifugal pump (DCP) with theoretical calculation, numerical simulation and experimental measure. Three different calculation formulas were respectively introduced and used in the model pump. The calculated results were compared and analyzed with the numerical simulation values and experimental results, and the detailed numerical simulation methods and experimental configuration were explained. Finally, the more accurate formula for calculating the axial force in oblique flow centrifugal impeller was selected out. At the rated flow point, the deviation of the axial force obtained by numerical simulation and the experimental value is approximately 3.8%, and the calculated result of selected formula only less than the experimental results of 2.6%. The results provide a theoretical basis for the axial force calculation in the centrifugal impeller design process.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bo Chen ◽  
Baolin Song ◽  
Bicheng Tu ◽  
Yiming Zhang ◽  
Xiaojun Li ◽  
...  

This work analyzes the causes of the slip phenomenon in the impeller on the basis of the internal flow mechanism. Detailed optical measurements of the flow inside the rotation passages of a five-bladed centrifugal pump impeller are obtained through particle image velocimetry (PIV). On the basis of experimental data, the deviation coefficient of slip velocity is proposed and then revised according to the slip factor calculation formula of Stechkin. Results show that, at the same rotation speed, the slip factor increases with the flow rate and reaches the maximum value at 1.0 QBEP flow rate. At different rotation speeds, the slip factor increases with the rotation speed and shows a relatively large variation range. Moreover, a revised slip factor formula is proposed. The modified model is suitable for the correction of slip factor at part-load flow rates and serves as a guide for the hydraulic performance design and prediction of centrifugal pumps.


Author(s):  
Jia Li ◽  
Xin Wang ◽  
Wancheng Wang ◽  
Yue Wang

This paper presents a high-speed aero-fuel centrifugal pump with an active inlet injector for an aero-engine aiming at regulating the internal flow field and improving overall hydraulic performance. Unlike most of the existing centrifugal pumps for aero-engines, an injector is designed and integrated with the pump to accomplish the active flow control. Firstly, by employing the energy equation in the pump, reasonable geometrical parameters of the injector are calculated. Then, a validation study is conducted with three known turbulence models, showing that simulations with the RNG κ- ε turbulence model can accurately predict the head and efficiency of the experimental pump. Finally, simulation results with the determined turbulence model are discussed. The results show that the static pressure is uniformly distributed inside the impeller, the volute and the injector. The flow field is significantly ameliorated by improving the pressure inside the suction pipe and controlling the flow direction via the injector. Furthermore, the head and efficiency of the designed pump with an active inlet injector are improved compared to the one without an injector.


2013 ◽  
Vol 467 ◽  
pp. 461-465 ◽  
Author(s):  
Chin Ting Yang

The high-specific-speed centrifugal pumps are very common in industrial factory for transporting fluids all day long. However, oversized pumps with low performance still could meet the purpose of fluid transporting. The aim of this study was to reduce the existed commercial impeller energy consumption by optimizing the performance of impeller through CAE processes. The impeller model was first generated by BladeGen software and analyzed by CFX in Turbo-mode. The optimized model then exported to machine center to cut the precise aluminum mold. A regular sand die casting processes were used to manufacture the impeller. The original pump which only impeller was replaced with the new one was tested with performance measurement system again. The results show that when the mass flow rate between 40-90kg/s the CFD software predicted very well pump heads and efficiencies with experimental data, which was called optimized impeller. But around the minimum and maximum flow rate region, the recirculation flow between blades and frictional loss model used still need further investigation to shrink the difference. Compare to the original impeller, the optimized one had increased efficiency 6% at the mass flow rate of 80kg/s. Also the high efficiency region (nearby of BEP) of the new impeller had broadened 50%. And the maximum mass flow rate increased 13% than the original one.


Sign in / Sign up

Export Citation Format

Share Document