Automatic flight control design considering objective and subjective risks during carrier landing

Author(s):  
Lipeng Wang ◽  
Zhi Zhang ◽  
Qidan Zhu

In this article, a design scheme of automatic carrier landing system control law based on combination of the objective risk and the subjective risk is proposed, in order to improve the safety and flying quality of the landing. The nonlinear longitudinal mathematical model is constructed in the air wake turbulence condition during carrier landing, which is transformed into a linear perturbed model by the state-space equations with deviation state variables. The concepts of the objective risk and the subjective risk in the recovery of an aircraft aboard a carrier are addressed. A principle of predicting the future states based on the current ones is put forward so that a mathematic model for the objective risk is established, synthetically considering the current and future landing state deviations. For the other risk, the corresponding model is obtained by the subjective experiences of the pilots in the flight simulation tests. Furthermore, a novel model predictive control algorithm, which contains the additional subjective risk and the time-varying weights of the state terms, is proposed. Automatic carrier landing control law is built by introducing the objective risk, the subjective risk, and the effect of carrier air wake disturbance. In the rolling optimization progress, these time-varying weights are dynamically tuned according to the constantly changing objective risk to control the state deviations and suppress this risk, while the subjective risk is handled by the additional risk terms. Besides, the action of carrier air wake disturbance is considered and compensated in the derivation of the linear matrix inequalities. Test results based on a semi-physical simulation platform indicate that the new automatic carrier landing system control algorithm proposed by this article brings about an excellent carrier landing performance as well as an improved flying quality.

Author(s):  
Dawei Wu ◽  
Jun Zhou ◽  
Hui Ye

In this article, the high angle of attack (AOA) maneuver control problem is studied under multiple disturbances and uncertainties. For the first time, the switched distributed delay is constructed to characterize the unsteady aerodynamics. Based on neural networks (NNs) and hyperbolic tangent function, the disturbance observer technique is extended to the nonstrict-feedback system control. To handle the switching problem, time-delay problem, and nonstrict-feedback problem caused by switched distributed delay terms, the Lyapunov–Krasovskii (LK) functional method and a variable separation method are cleverly combined. The proposed LK function can relax the constraints on time-varying delay. Finally, a disturbance observer–based neural finite-time prescribed performance flight control law is developed to improve the flight performance at high AOA, and its effectiveness has been verified through rigorous theoretical analysis and simulation experiments.


2021 ◽  
pp. 107754632110501
Author(s):  
Ji-Won Lee ◽  
Nguyen Xuan-Mung ◽  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

In recent years, the boom of the quadcopter industry resulted in a broad range of real-world applications which highlighted the urgent need to improve quadcopter control quality. Typically, external disturbances, such as wind, parameter uncertainties caused by payload variations, or the ground effect, can severely degrade the quadcopter’s altitude control performance. Meanwhile, widely used controllers like the proportional-integral-derivative control cannot guarantee control performance when the system is critically affected by factors that exhibit a high degree of variability with time. In this paper, an adaptive control algorithm is proposed to improve quadcopter altitude tracking performance in the presence of both the ground effect and a time-varying payload. First, we derive an adaptive altitude control algorithm using the sliding mode control technique to account for these uncertainties in the quadcopter dynamics model. Second, we apply Lyapunov theory to analyze the stability of the closed-loop system. Finally, we conduct several numerical simulations and experiments to validate the effectiveness of the proposed method.


2005 ◽  
Vol 46 (4) ◽  
pp. 471-484 ◽  
Author(s):  
Honglei Xu ◽  
Xinzhi Liu ◽  
Kok Lay Teo

AbstractIn this paper, we study the problem of robust H∞ stabilisation with definite attenuance for a class of impulsive switched systems with time-varying uncertainty. A norm-bounded uncertainty is assumed to appear in all the matrices of the state model. An LMI-based method for robust· H∞ stabilisation with definite attenuance via a state feedback control law is developed. A simulation example is presented to demonstrate the effectiveness of the proposed method.


2012 ◽  
Vol 466-467 ◽  
pp. 1202-1206
Author(s):  
Zheng Zai Qian ◽  
Xiao Hua Zhai

Modern aircraft is designed generally with static unstable configuration in order to achieve the good maneuvering performance and the good controllability. Flight control law design is very important for the modern aircraft. The most importance for the flight control law is sustained flight. This paper presents a method of the state space description static instability mathematic model of modern aircraft. A new flight control law design based on pole placement and state feedback method is given in this paper also. The flight system stability and maneuverability are greatly improved through the method of the pole placement and state feedback. The simulation results show that pole placement method is very important and feasible in modern flight control system design.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
YanBin Liu ◽  
YuHui Li ◽  
FeiTeng Jin

The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.


2010 ◽  
Vol 97-101 ◽  
pp. 2580-2584 ◽  
Author(s):  
Rui Bo Yuan ◽  
Chun Geng Sun ◽  
Qing Lee ◽  
Hai Feng Yang

The research works involved in a three freedoms line type pneumatic manipulator. The object is aimed to control of position servo system. According to the mathematic model of single freedoms pneumatic manipulator, AMESim and MATLAB were used for system control simulation, and made comparison between whether or not have PID controller in the pneumatic position servo system in the simulation, obtain Consistent results. The Results shown that PID control of the pneumatic position servo system has high steady-state accuracy, short adjusting time, little overshoot, and can overcome the nonlinear time—varying characteristics to some extent.


Author(s):  
Syed Aseem Ul Islam ◽  
Adam L. Bruce ◽  
Tam W. Nguyen ◽  
Ilya Kolmanovsky ◽  
Dennis Bernstein

Sign in / Sign up

Export Citation Format

Share Document