Mid- to late-Holocene oceanographic variability on the Southeast Greenland shelf

The Holocene ◽  
2012 ◽  
Vol 23 (2) ◽  
pp. 167-178 ◽  
Author(s):  
CS Andresen ◽  
MJ Hansen ◽  
M-S Seidenkrantz ◽  
AE Jennings ◽  
MF Knudsen ◽  
...  

A reconstruction of oceanographic variability of the past 5800 years on the southeast Greenland shelf was obtained by analysing a combined marine sediment record based on two cores from the same site. Cores Fox04G/05R were retrieved from a side basin to a cross-shelf trough connecting the 900 m deep Sermilik Fjord with the Irminger Sea in the northwestern North Atlantic. The record was analysed in terms of grain size distribution, XRF and benthic and planktonic foraminiferal content and the chronology was obtained on the basis of 210Pb and 14C dating. The late-Holocene paleoceanographic variations in the record were characterised by a marked influence from the Irminger Current (IC) at the onset of the record at 5800 cal. yr BP and the regional Holocene Climatic Optimum between 5200 and 4200 cal. yr BP. After 3600 cal. yr BP Neoglacial cooling with increased influence of polar waters from the East Greenland Current (EGC) diminished the influence from the IC. Between 1500 and 700 cal. yr BP, the environment was highly dominated by cold low-salinity water masses characterised by sea ice forming locally and/or transported with an intensified EGC. At 700 cal. yr BP, concordant with the onset of the ‘Little Ice Age’, inflow of IC water masses intensified, notably during short-lived warming episodes of the North Atlantic Current most likely related to a contracted subpolar gyre. At the same time, the EGC polar water transport also intensified leading to a stratified water column on the shelf and this may have favoured entrainment of warm subsurface IC waters. Alternatively, the relatively warm rim of the eastern subpolar gyre may have promoted intense submarine melting of extended Southeast Greenland outlet glaciers at this time, producing enhanced meltwater outflow which favoured estuarine circulation processes maintaining the inflow of IC water masses.

2019 ◽  
Vol 59 (1) ◽  
pp. 177-180 ◽  
Author(s):  
A. A. Klyuvitkin ◽  
S. V. Gladyshev ◽  
M. D. Kravchishina ◽  
A. N. Novigatsky ◽  
D. V. Eroshenko ◽  
...  

The first results of the multidisciplinary expedition aboard the RV «Akademik Mstislav Keldysh» to the North Atlantic in July 2017 are given. Continuation of deep convection in the Irminger Sea to a depth of 1500 m, which began in 2015, is discovered. New information is provided on the structure of the main jets of the North Atlantic Current in the Iceland basin and in the Irminger Sea (Irminger Current), as well as the East Greenland Current. New samples of atmospheric aerosols, suspended particulate matter and bottom sediments are collected. New data on the particle fluxes have been obtained using sediment traps.


2018 ◽  
Vol 14 (11) ◽  
pp. 1639-1651 ◽  
Author(s):  
Gloria M. Martin-Garcia ◽  
Francisco J. Sierro ◽  
José A. Flores ◽  
Fátima Abrantes

Abstract. The southwestern Iberian margin is highly sensitive to changes in the distribution of North Atlantic currents and to the position of oceanic fronts. In this work, the evolution of oceanographic parameters from 812 to 530 ka (MIS20–MIS14) is studied based on the analysis of planktonic foraminifer assemblages from site IODP-U1385 (37∘34.285′ N, 10∘7.562′ W; 2585 m b.s.l.). By comparing the obtained results with published records from other North Atlantic sites between 41 and 55∘ N, basin-wide paleoceanographic conditions are reconstructed. Variations of assemblages dwelling in different water masses indicate a major change in the general North Atlantic circulation during MIS16, coinciding with the definite establishment of the 100 ky cyclicity associated with the mid-Pleistocene transition. At the surface, this change consisted in the redistribution of water masses, with the subsequent thermal variation, and occurred linked to the northwestward migration of the Arctic Front (AF), and the increase in the North Atlantic Deep Water (NADW) formation with respect to previous glacials. During glacials prior to MIS16, the NADW formation was very weak, which drastically slowed down the surface circulation; the AF was at a southerly position and the North Atlantic Current (NAC) diverted southeastwards, developing steep south–north, and east–west, thermal gradients and blocking the arrival of warm water, with associated moisture, to high latitudes. During MIS16, the increase in the meridional overturning circulation, in combination with the northwestward AF shift, allowed the arrival of the NAC to subpolar latitudes, multiplying the moisture availability for ice-sheet growth, which could have worked as a positive feedback to prolong the glacials towards 100 ky cycles.


2020 ◽  
Author(s):  
Pascale Lherminier ◽  
Herlé Mercier ◽  
Fiz F. Perez ◽  
Marcos Fontela

<p><span>According to the subpolar AMOC index built from ARGO and altimetry, the AMOC amplitude across the OVIDE section (from Greenland to Portugal) was similar to that of the mid-1990s between 2014 and 2017, i.e. 4-5 Sv above the level of the 2000s. It then returned to average values in 2018. The same index computed independently from the biennial summer cruises over 2002-2018 confirms this statement. Interestingly, despite the concomitant cold and fresh anomaly in the subpolar Atlantic, the heat flux across OVIDE remains correlated with the AMOC amplitude. This can be explained by the paths taken by the North Atlantic Current and the transport anomalies in the subarctic front. In 2014, the OVIDE section was complemented by a section from Greenland to Newfoundland (GA01), showing how the water of the lower limb of the AMOC was densified by deep convection in the Labrador Sea. The spatial patterns of volume, heat, salt and oxygen transport anomalies after 2014 will be discussed at the light of the 2000s average.</span></p>


2012 ◽  
Vol 25 (7) ◽  
pp. 2421-2439 ◽  
Author(s):  
Helene R. Langehaug ◽  
Iselin Medhaug ◽  
Tor Eldevik ◽  
Odd Helge Otterå

Abstract In the present study the decadal variability in the strength and shape of the subpolar gyre (SPG) in a 600-yr preindustrial simulation using the Bergen Climate Model is investigated. The atmospheric influence on the SPG strength is reflected in the variability of Labrador Sea Water (LSW), which is largely controlled by the North Atlantic Oscillation, the first mode of the North Atlantic atmospheric variability. A combination of the amount of LSW, the overflows from the Nordic seas, and the second mode of atmospheric variability, the East Atlantic Pattern, explains 44% of the modeled decadal variability in the SPG strength. A prior increase in these components leads to an intensified SPG in the western subpolar region. Typically, an increase of one standard deviation (std dev) of the total overflow (1 std dev = 0.2 Sv; 1 Sv ≡ 106 m3 s−1) corresponds to an intensification of about one-half std dev of the SPG strength (1 std dev = 2 Sv). A similar response is found for an increase of one std dev in the amount of LSW, and simultaneously the strength of the North Atlantic Current increases by one-half std dev (1 std dev = 0.9 Sv).


2010 ◽  
Vol 6 (5) ◽  
pp. 1655-1683 ◽  
Author(s):  
C. Martín-Puertas ◽  
F. Jiménez-Espejo ◽  
F. Martínez-Ruiz ◽  
V. Nieto-Moreno ◽  
M. Rodrigo ◽  
...  

Abstract. A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G) and terrestrial (Zoñar Lake, Andalucia, Spain) paleoclimate information using geochemical proxies provides a high resolution reconstruction of climate variability and human influence in southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. Drier stages occurred prior to 2.7 cal ka BP, well-correlated with the global aridity crisis of the third-millennium BC, and during the Medieval Warm Period (1.4–0.7 cal ka BP). Wetter conditions prevailed from 2.7 to 1.4 cal ka BP and after the Medieval Warm Period and the onset of the Little Ice Age. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity that the period before. Additionally, Pb anomalies in sediments at the end of Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The evolution of the climate in the study area during the Late Holocene confirms the see-saw pattern previously shown between eastern and western Mediterranean regions and suggests a higher influence of the North Atlantic dynamics in the western Mediterranean.


2008 ◽  
Vol 38 (1) ◽  
pp. 104-120 ◽  
Author(s):  
Amy S. Bower ◽  
Wilken-Jon von Appen

Abstract Recent studies have indicated that the North Atlantic Ocean subpolar gyre circulation undergoes significant interannual-to-decadal changes in response to variability in atmospheric forcing. There are also observations, however, suggesting that the southern limb of the subpolar gyre, namely, the eastward-flowing North Atlantic Current (NAC), may be quasi-locked to particular latitudes in the central North Atlantic by fracture zones (gaps) in the Mid-Atlantic Ridge. This could constrain the current’s ability to respond to variability in forcing. In the present study, subsurface float trajectories at 100–1000 m collected during 1997–99 and satellite-derived surface geostrophic velocities from 1992 to 2006 are used to provide an improved description of the detailed pathways of the NAC over the ridge and their relationship to bathymetry. Both the float and satellite observations indicate that in 1997–99, the northern branch of the NAC was split into two branches as it crossed the ridge, one quasi-locked to the Charlie–Gibbs Fracture Zone (CGFZ; 52°–53°N) and the other to the Faraday Fracture Zone (50°–51°N). The longer satellite time series shows, however, that this pattern did not persist outside the float sampling period and that other branching modes persisted for one or more years, including an approximately 12-month time period in 2002–03 when the strongest eastward flow over the ridge was at ∼49°N. Schott et al. showed how northward excursions of the NAC can temporarily block the westward flow of the Iceland–Scotland Overflow Water through the CGFZ. From the 13-yr time series of surface geostrophic velocity, it is estimated that such blocking may occur on average 6% of the time, although estimates for any given 12-month period range from 0% to 35%.


2021 ◽  
Vol 11 (8) ◽  
pp. 3343
Author(s):  
Harunur Rashid ◽  
Qian Qian Lu ◽  
Min Zeng ◽  
Yang Wang ◽  
Zhao Wu Zhang

Dramatic changes occur in the sea-surface characteristics (i.e., temperature and salinity) and freshwater input due to the interaction of cold and fresh Labrador Current and warm and salty North Atlantic Current (NAC) on the southeast Grand Banks. As a result, the biological productivity and seasonal stratification of the upper water masses are intensified. Such changes must have been more dramatic during the glacial times due to the penetration of the Polar and Arctic fronts and southward migration of the Gulf Stream/NAC. However, the extent to which such changes impacted the sea-surface characteristics in the Newfoundland Basin is poorly known. We report changes in the sea-surface characteristics using a piston core (Hu9007-08) collected from the Milne seamount during the last 145,000 years. Heinrich layers H1, H2, H4, and H5 and H11 within the MIS3 and at the penultimate deglaciation were identified by the ice-rafted detritus (IRD) and Neogloboquadrina pachyderma peaks and lighter oxygen isotopes. Rapid turnover by the foraminiferal species with distinct depth habitats and ecological niches in the mixed-layer and thermocline suggests an interplay between the polar and subpolar water masses during the Heinrich and non-Heinrich periods. Only two North Atlantic-wide cooling events, C24 and C21, in which the latter event linked to the minor IRD event during the marine isotope stage (MIS) 5 in Hu90-08, compared to the eight events in the eastern subpolar gyre (e.g., ODP site 984). Millennial-scale N. pachyderma variability in the western subpolar gyre appears to be absent in the eastern subpolar gyre during the MIS3 suggesting the occasional presence of salty and warm water by the NAC inflow, implying a different climate state between the western and eastern subpolar gyre. Although T. quinqueloba data are fragmentary, there are differences between the western and eastern subpolar gyre in addition to the differences within the western subpolar gyre during MIS5 that might imply a variable influence by the subpolar water. This finding suggests that the influence by the NAC outweighs the impact of cold and fresh polar water in the northern northwest Atlantic during the MIS5.


1972 ◽  
Vol 72 (1) ◽  
pp. 341-349 ◽  
Author(s):  
C. R. Mann

SynopsisThe surveys of temperature and salinity that have led to the concept that the Gulf Stream splits into branches are reviewed, beginning with the survey made by Helland-Hansen on board the Michael Sars in 1910. The system of currents, or branches, between the Newfoundland Banks and the Mid- Atlantic deduced by the different investigations from charts of temperature, or by dynamic computation, are not all compatible. There is good evidence that part of the Gulf Stream turns south-east after passing the Newfoundland Banks and part turns north to become the North Atlantic Current. Both these currents are boundaries between water masses in the upper layer of the ocean. The evidence for permanent currents other than these two is conflicting.


2013 ◽  
Vol 9 (4) ◽  
pp. 1505-1518 ◽  
Author(s):  
C. V. Dylmer ◽  
J. Giraudeau ◽  
F. Eynaud ◽  
K. Husum ◽  
A. De Vernal

Abstract. Three marine sediment cores distributed along the Norwegian (MD95-2011), Barents Sea (JM09-KA11-GC), and Svalbard (HH11-134-BC) continental margins have been investigated in order to reconstruct changes in the poleward flow of Atlantic waters (AW) and in the nature of upper surface water masses within the eastern Nordic Seas over the last 3000 yr. These reconstructions are based on a limited set of coccolith proxies: the abundance ratio between Emiliania huxleyi and Coccolithus pelagicus, an index of Atlantic vs. Polar/Arctic surface water masses; and Gephyrocapsa muellerae, a drifted coccolith species from the temperate North Atlantic, whose abundance changes are related to variations in the strength of the North Atlantic Current. The entire investigated area, from 66 to 77° N, was affected by an overall increase in AW flow from 3000 cal yr BP (before present) to the present. The long-term modulation of westerlies' strength and location, which are essentially driven by the dominant mode of the North Atlantic Oscillation (NAO), is thought to explain the observed dynamics of poleward AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic front between the area off western Norway and the western Barents Sea–eastern Fram Strait region. The Little Ice Age (LIA) was governed by deteriorating conditions, with Arctic/Polar waters dominating in the surface off western Svalbard and western Barents Sea, possibly associated with both severe sea ice conditions and a strongly reduced AW strength. A sudden short pulse of resumed high WSC (West Spitsbergen Current) flow interrupted this cold spell in eastern Fram Strait from 330 to 410 cal yr BP. Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 19th century off western Svalbard, it also shows that such a warming was primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 yr.


2018 ◽  
Author(s):  
Gloria M. Martin-Garcia ◽  
Francisco J. Sierro ◽  
José A. Flores ◽  
Fátima Abrantes

Abstract. The southwestern Iberian margin is highly sensitive to changes in the distribution of North Atlantic currents, and to the position of oceanic fronts. In this work, the evolution of oceanographic parameters from 812 to 530 ka (MIS20-MIS14) is reconstructed, based on the analysis of planktonic foraminifer assemblages from site IODP-U1385 (37°34.285' N, 10°7.562' W; 2585 m bsl). By comparing the obtained results with published records from other North Atlantic sites between 41 and 55° N, basin-wide paleoceanographic conditions are reconstructed. Variations of assemblages dwelling in different water masses indicate a major change in the general North Atlantic circulation during MIS16, coinciding with the definite establishment of the 100-ky cyclicity associated to the Mid-Pleistocene Transition. In surface, this change consisted in the re-distribution of water masses, with the subsequent thermal variation, and occurred linked to the northwestward migration of the Arctic Front (AF) and the increase in the North Atlantic Deep Water (NADW) formation. During glacials prior to MIS 16, the NADW formation was very weak, which drastically slowed down the surface circulation; the AF was at a southerly position and the North Atlantic Current (NAC) diverted southeastwards, developing steep south-north, and east-west, thermal gradients and blockading the arrival of warm water, with associated moisture, to high latitudes. During MIS16, the important increase in the meridional overturning circulation, in combination with the north-westward AF shift, allowed the arrival of the NAC to subpolar latitudes, multiplying the moisture availability for ice-sheets growth, which worked as a positive feedback to prolong the glacials towards 100-ky cycles.


Sign in / Sign up

Export Citation Format

Share Document