scholarly journals A review of statistical updating methods for clinical prediction models

2016 ◽  
Vol 27 (1) ◽  
pp. 185-197 ◽  
Author(s):  
Ting-Li Su ◽  
Thomas Jaki ◽  
Graeme L Hickey ◽  
Iain Buchan ◽  
Matthew Sperrin

A clinical prediction model is a tool for predicting healthcare outcomes, usually within a specific population and context. A common approach is to develop a new clinical prediction model for each population and context; however, this wastes potentially useful historical information. A better approach is to update or incorporate the existing clinical prediction models already developed for use in similar contexts or populations. In addition, clinical prediction models commonly become miscalibrated over time, and need replacing or updating. In this article, we review a range of approaches for re-using and updating clinical prediction models; these fall in into three main categories: simple coefficient updating, combining multiple previous clinical prediction models in a meta-model and dynamic updating of models. We evaluated the performance (discrimination and calibration) of the different strategies using data on mortality following cardiac surgery in the United Kingdom: We found that no single strategy performed sufficiently well to be used to the exclusion of the others. In conclusion, useful tools exist for updating existing clinical prediction models to a new population or context, and these should be implemented rather than developing a new clinical prediction model from scratch, using a breadth of complementary statistical methods.

2021 ◽  
Vol 6 (1) ◽  
pp. e003451
Author(s):  
Arjun Chandna ◽  
Rainer Tan ◽  
Michael Carter ◽  
Ann Van Den Bruel ◽  
Jan Verbakel ◽  
...  

IntroductionEarly identification of children at risk of severe febrile illness can optimise referral, admission and treatment decisions, particularly in resource-limited settings. We aimed to identify prognostic clinical and laboratory factors that predict progression to severe disease in febrile children presenting from the community.MethodsWe systematically reviewed publications retrieved from MEDLINE, Web of Science and Embase between 31 May 1999 and 30 April 2020, supplemented by hand search of reference lists and consultation with an expert Technical Advisory Panel. Studies evaluating prognostic factors or clinical prediction models in children presenting from the community with febrile illnesses were eligible. The primary outcome was any objective measure of disease severity ascertained within 30 days of enrolment. We calculated unadjusted likelihood ratios (LRs) for comparison of prognostic factors, and compared clinical prediction models using the area under the receiver operating characteristic curves (AUROCs). Risk of bias and applicability of studies were assessed using the Prediction Model Risk of Bias Assessment Tool and the Quality In Prognosis Studies tool.ResultsOf 5949 articles identified, 18 studies evaluating 200 prognostic factors and 25 clinical prediction models in 24 530 children were included. Heterogeneity between studies precluded formal meta-analysis. Malnutrition (positive LR range 1.56–11.13), hypoxia (2.10–8.11), altered consciousness (1.24–14.02), and markers of acidosis (1.36–7.71) and poor peripheral perfusion (1.78–17.38) were the most common predictors of severe disease. Clinical prediction model performance varied widely (AUROC range 0.49–0.97). Concerns regarding applicability were identified and most studies were at high risk of bias.ConclusionsFew studies address this important public health question. We identified prognostic factors from a wide range of geographic contexts that can help clinicians assess febrile children at risk of progressing to severe disease. Multicentre studies that include outpatients are required to explore generalisability and develop data-driven tools to support patient prioritisation and triage at the community level.PROSPERO registration numberCRD42019140542.


Endocrine ◽  
2021 ◽  
Author(s):  
Olivier Zanier ◽  
Matteo Zoli ◽  
Victor E. Staartjes ◽  
Federica Guaraldi ◽  
Sofia Asioli ◽  
...  

Abstract Purpose Biochemical remission (BR), gross total resection (GTR), and intraoperative cerebrospinal fluid (CSF) leaks are important metrics in transsphenoidal surgery for acromegaly, and prediction of their likelihood using machine learning would be clinically advantageous. We aim to develop and externally validate clinical prediction models for outcomes after transsphenoidal surgery for acromegaly. Methods Using data from two registries, we develop and externally validate machine learning models for GTR, BR, and CSF leaks after endoscopic transsphenoidal surgery in acromegalic patients. For the model development a registry from Bologna, Italy was used. External validation was then performed using data from Zurich, Switzerland. Gender, age, prior surgery, as well as Hardy and Knosp classification were used as input features. Discrimination and calibration metrics were assessed. Results The derivation cohort consisted of 307 patients (43.3% male; mean [SD] age, 47.2 [12.7] years). GTR was achieved in 226 (73.6%) and BR in 245 (79.8%) patients. In the external validation cohort with 46 patients, 31 (75.6%) achieved GTR and 31 (77.5%) achieved BR. Area under the curve (AUC) at external validation was 0.75 (95% confidence interval: 0.59–0.88) for GTR, 0.63 (0.40–0.82) for BR, as well as 0.77 (0.62–0.91) for intraoperative CSF leaks. While prior surgery was the most important variable for prediction of GTR, age, and Hardy grading contributed most to the predictions of BR and CSF leaks, respectively. Conclusions Gross total resection, biochemical remission, and CSF leaks remain hard to predict, but machine learning offers potential in helping to tailor surgical therapy. We demonstrate the feasibility of developing and externally validating clinical prediction models for these outcomes after surgery for acromegaly and lay the groundwork for development of a multicenter model with more robust generalization.


2021 ◽  
Author(s):  
Steven J. Staffa ◽  
David Zurakowski

Summary Clinical prediction models in anesthesia and surgery research have many clinical applications including preoperative risk stratification with implications for clinical utility in decision-making, resource utilization, and costs. It is imperative that predictive algorithms and multivariable models are validated in a suitable and comprehensive way in order to establish the robustness of the model in terms of accuracy, predictive ability, reliability, and generalizability. The purpose of this article is to educate anesthesia researchers at an introductory level on important statistical concepts involved with development and validation of multivariable prediction models for a binary outcome. Methods covered include assessments of discrimination and calibration through internal and external validation. An anesthesia research publication is examined to illustrate the process and presentation of multivariable prediction model development and validation for a binary outcome. Properly assessing the statistical and clinical validity of a multivariable prediction model is essential for reassuring the generalizability and reproducibility of the published tool.


2021 ◽  
Author(s):  
Esmee Venema ◽  
Benjamin S Wessler ◽  
Jessica K Paulus ◽  
Rehab Salah ◽  
Gowri Raman ◽  
...  

AbstractObjectiveTo assess whether the Prediction model Risk Of Bias ASsessment Tool (PROBAST) and a shorter version of this tool can identify clinical prediction models (CPMs) that perform poorly at external validation.Study Design and SettingWe evaluated risk of bias (ROB) on 102 CPMs from the Tufts CPM Registry, comparing PROBAST to a short form consisting of six PROBAST items anticipated to best identify high ROB. We then applied the short form to all CPMs in the Registry with at least 1 validation and assessed the change in discrimination (dAUC) between the derivation and the validation cohorts (n=1,147).ResultsPROBAST classified 98/102 CPMS as high ROB. The short form identified 96 of these 98 as high ROB (98% sensitivity), with perfect specificity. In the full CPM registry, 529/556 CPMs (95%) were classified as high ROB, 20 (4%) low ROB, and 7 (1%) unclear ROB. Median change in discrimination was significantly smaller in low ROB models (dAUC −0.9%, IQR −6.2%–4.2%) compared to high ROB models (dAUC −11.7%, IQR −33.3%–2.6%; p<0.001).ConclusionHigh ROB is pervasive among published CPMs. It is associated with poor performance at validation, supporting the application of PROBAST or a shorter version in CPM reviews.What is newHigh risk of bias is pervasive among published clinical prediction modelsHigh risk of bias identified with PROBAST is associated with poorer model performance at validationA subset of questions can distinguish between models with high and low risk of bias


2020 ◽  
Author(s):  
Fernanda Gonçalves Silva ◽  
Leonardo Oliveira Pena Costa ◽  
Mark J Hancock ◽  
Gabriele Alves Palomo ◽  
Luciola da Cunha Menezes Costa ◽  
...  

Abstract Background: The prognosis of acute low back pain is generally favourable in terms of pain and disability; however, outcomes vary substantially between individual patients. Clinical prediction models help in estimating the likelihood of an outcome at a certain time point. There are existing clinical prediction models focused on prognosis for patients with low back pain. To date, there is only one previous systematic review summarising the discrimination of validated clinical prediction models to identify the prognosis in patients with low back pain of less than 3 months duration. The aim of this systematic review is to identify existing developed and/or validated clinical prediction models on prognosis of patients with low back pain of less than 3 months duration, and to summarise their performance in terms of discrimination and calibration. Methods: MEDLINE, Embase and CINAHL databases will be searched, from the inception of these databases until January 2020. Eligibility criteria will be: (1) prognostic model development studies with or without external validation, or prognostic external validation studies with or without model updating; (2) with adults aged 18 or over, with ‘recent onset’ low back pain (i.e. less than 3 months duration), with or without leg pain; (3) outcomes of pain, disability, sick leave or days absent from work or return to work status, and self-reported recovery; and (4) study with a follow-up of at least 12 weeks duration. The risk of bias of the included studies will be assessed by the Prediction model Risk Of Bias ASsessment Tool, and the overall quality of evidence will be rated using the Hierarchy of Evidence for Clinical Prediction Rules. Discussion: This systematic review will identify, appraise, and summarize evidence on the performance of existing prediction models for prognosis of low back pain, and may help clinicians to choose the best option of prediction model to better inform patients about their likely prognosis. Systematic review registration: PROSPERO reference number CRD42020160988


2021 ◽  
Author(s):  
Cynthia Yang ◽  
Jan A. Kors ◽  
Solomon Ioannou ◽  
Luis H. John ◽  
Aniek F. Markus ◽  
...  

Objectives This systematic review aims to provide further insights into the conduct and reporting of clinical prediction model development and validation over time. We focus on assessing the reporting of information necessary to enable external validation by other investigators. Materials and Methods We searched Embase, Medline, Web-of-Science, Cochrane Library and Google Scholar to identify studies that developed one or more multivariable prognostic prediction models using electronic health record (EHR) data published in the period 2009-2019. Results We identified 422 studies that developed a total of 579 clinical prediction models using EHR data. We observed a steep increase over the years in the number of developed models. The percentage of models externally validated in the same paper remained at around 10%. Throughout 2009-2019, for both the target population and the outcome definitions, code lists were provided for less than 20% of the models. For about half of the models that were developed using regression analysis, the final model was not completely presented. Discussion Overall, we observed limited improvement over time in the conduct and reporting of clinical prediction model development and validation. In particular, the prediction problem definition was often not clearly reported, and the final model was often not completely presented. Conclusion Improvement in the reporting of information necessary to enable external validation by other investigators is still urgently needed to increase clinical adoption of developed models.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sharmala Thuraisingam ◽  
Patty Chondros ◽  
Michelle M. Dowsey ◽  
Tim Spelman ◽  
Stephanie Garies ◽  
...  

Abstract Background The use of general practice electronic health records (EHRs) for research purposes is in its infancy in Australia. Given these data were collected for clinical purposes, questions remain around data quality and whether these data are suitable for use in prediction model development. In this study we assess the quality of data recorded in 201,462 patient EHRs from 483 Australian general practices to determine its usefulness in the development of a clinical prediction model for total knee replacement (TKR) surgery in patients with osteoarthritis (OA). Methods Variables to be used in model development were assessed for completeness and plausibility. Accuracy for the outcome and competing risk were assessed through record level linkage with two gold standard national registries, Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) and National Death Index (NDI). The validity of the EHR data was tested using participant characteristics from the 2014–15 Australian National Health Survey (NHS). Results There were substantial missing data for body mass index and weight gain between early adulthood and middle age. TKR and death were recorded with good accuracy, however, year of TKR, year of death and side of TKR were poorly recorded. Patient characteristics recorded in the EHR were comparable to participant characteristics from the NHS, except for OA medication and metastatic solid tumour. Conclusions In this study, data relating to the outcome, competing risk and two predictors were unfit for prediction model development. This study highlights the need for more accurate and complete recording of patient data within EHRs if these data are to be used to develop clinical prediction models. Data linkage with other gold standard data sets/registries may in the meantime help overcome some of the current data quality challenges in general practice EHRs when developing prediction models.


2021 ◽  
Author(s):  
Arjun Chandna ◽  
Raman Mahajan ◽  
Priyanka Gautam ◽  
Lazaro Mwandigha ◽  
Karthik Gunasekaran ◽  
...  

ABSTRACTBackgroundIn locations where few people have received COVID-19 vaccines, health systems remain vulnerable to surges in SARS-CoV-2 infections. Tools to identify patients suitable for community-based management are urgently needed.MethodsWe prospectively recruited adults presenting to two hospitals in India with moderate symptoms of laboratory-confirmed COVID-19 in order to develop and validate a clinical prediction model to rule-out progression to supplemental oxygen requirement. The primary outcome was defined as any of the following: SpO2 < 94%; respiratory rate > 30 bpm; SpO2/FiO2 < 400; or death. We specified a priori that each model would contain three clinical parameters (age, sex and SpO2) and one of seven shortlisted biochemical biomarkers measurable using near-patient tests (CRP, D-dimer, IL-6, NLR, PCT, sTREM-1 or suPAR), to ensure the models would be suitable for resource-limited settings. We evaluated discrimination, calibration and clinical utility of the models in a temporal external validation cohort.Findings426 participants were recruited, of whom 89 (21·0%) met the primary outcome. 257 participants comprised the development cohort and 166 comprised the validation cohort. The three models containing NLR, suPAR or IL-6 demonstrated promising discrimination (c-statistics: 0·72 to 0·74) and calibration (calibration slopes: 1·01 to 1·05) in the validation cohort, and provided greater utility than a model containing the clinical parameters alone.InterpretationWe present three clinical prediction models that could help clinicians identify patients with moderate COVID-19 suitable for community-based management. The models are readily implementable and of particular relevance for locations with limited resources.FundingMédecins Sans Frontières, India.RESEARCH IN CONTEXTEvidence before this studyA living systematic review by Wynants et al. identified 137 COVID-19 prediction models, 47 of which were derived to predict whether patients with COVID-19 will have an adverse outcome. Most lacked external validation, relied on retrospective data, did not focus on patients with moderate disease, were at high risk of bias, and were not practical for use in resource-limited settings. To identify promising biochemical biomarkers which may have been evaluated independently of a prediction model and therefore not captured by this review, we searched PubMed on 1 June 2020 using synonyms of “SARS-CoV-2” AND [“biomarker” OR “prognosis”]. We identified 1,214 studies evaluating biochemical biomarkers of potential value in the prognostication of COVID-19 illness. In consultation with FIND (Geneva, Switzerland) we shortlisted seven candidates for evaluation in this study, all of which are measurable using near-patient tests which are either currently available or in late-stage development.Added value of this studyWe followed the TRIPOD guidelines to develop and validate three promising clinical prediction models to help clinicians identify which patients presenting with moderate COVID-19 can be safely managed in the community. Each model contains three easily ascertained clinical parameters (age, sex, and SpO2) and one biochemical biomarker (NLR, suPAR or IL-6), and would be practical for implementation in high-patient-throughput low resource settings. The models showed promising discrimination and calibration in the validation cohort. The inclusion of a biomarker test improved prognostication compared to a model containing the clinical parameters alone, and extended the range of contexts in which such a tool might provide utility to include situations when bed pressures are less critical, for example at earlier points in a COVID-19 surge.Implications of all the available evidencePrognostic models should be developed for clearly-defined clinical use-cases. We report the development and temporal validation of three clinical prediction models to rule-out progression to supplemental oxygen requirement amongst patients presenting with moderate COVID-19. The models are readily implementable and should prove useful in triage and resource allocation. We provide our full models to enable independent validation.


Sign in / Sign up

Export Citation Format

Share Document