scholarly journals Vascularization of Natural and Synthetic Bone Scaffolds

2018 ◽  
Vol 27 (8) ◽  
pp. 1269-1280 ◽  
Author(s):  
Xi Liu ◽  
Adam E. Jakus ◽  
Mehmet Kural ◽  
Hong Qian ◽  
Alexander Engler ◽  
...  

Vascularization of engineered bone tissue is critical for ensuring its survival after implantation. In vitro pre-vascularization of bone grafts with endothelial cells is a promising strategy to improve implant survival. In this study, we pre-cultured human smooth muscle cells (hSMCs) on bone scaffolds for 3 weeks followed by seeding of human umbilical vein endothelial cells (HUVECs), which produced a desirable environment for microvasculature formation. The sequential cell-seeding protocol was successfully applied to both natural (decellularized native bone, or DB) and synthetic (3D-printed Hyperelastic “Bone” scaffolds, or HB) scaffolds, demonstrating a comprehensive platform for developing natural and synthetic-based in vitro vascularized bone grafts. Using this sequential cell-seeding process, the HUVECs formed lumen structures throughout the DB scaffolds as well as vascular tissue bridging 3D-printed fibers within the HB. The pre-cultured hSMCs were essential for endothelial cell (EC) lumen formation within DB scaffolds, as well as for upregulating EC-specific gene expression of HUVECs grown on HB scaffolds. We further applied this co-culture protocol to DB scaffolds using a perfusion bioreactor, to overcome the limitations of diffusive mass transport into the interiors of the scaffolds. Compared with static culture, panoramic histological sections of DB scaffolds cultured in bioreactors showed improved cellular density, as well as a nominal increase in the number of lumen structures formed by ECs in the interior regions of the scaffolds. In conclusion, we have demonstrated that the sequential seeding of hSMCs and HUVECs can serve to generate early microvascular networks that could further support the in vitro tissue engineering of naturally or synthetically derived bone grafts and in both random (DB) and ordered (HB) pore networks. Combined with the preliminary bioreactor study, this process also shows potential to generate clinically sized, vascularized bone scaffolds for tissue and regenerative engineering.

2007 ◽  
Vol 342-343 ◽  
pp. 17-20
Author(s):  
Hyeong In Kim ◽  
Ji Yeon Seo ◽  
Seung Jo Jeung ◽  
Sae Gwang Park ◽  
Young Il Yang

Fibrin is a natural substrate for growth, adhesion, and migration of mature endothelial cells (ECs) and a candidate coating material in approaches to graft endothelialization. Adipose tissue represents an abundant, practical source of donor tissue for stem cells which may be a useful source for engineering of vascular grafts. However, the optimal substrates that promote differentiation of adipose tissue-derived stem cells (ASCs) into ECs remain to be elucidated. In the present study, we investigated whether fibrin can be used as a substratum to support in vitro ECs differentiation of ASCs and whether fibrinogen concentration can be affect on ECs differentiation of ASCs. For determination of phenotypic characteristics of ASCs used in this experiment, we performed flow cytometry analysis. ASCs were plated on fibrin composed of varying concentrations of fibrinogen and induced into ECs differentiation in presence of VEGF. Before inducing into ECs, ASCs did not express any markers of hematopoietic cells (CD34, CD45), ECs (CD31, CD34), and endothelial progenitor cells (CD34, CD133, Flk-1). The degree of ECs differentiation was determined by capillary network formation, ECs-specific gene expression, and F-actin assembly. During the first 12 h after seeding, cells spread randomly, moved and formed small interconnected clusters. These clusters decreased in size and formed a capillary tube at 48 h. During the further incubation in presence of VEGF for 7 days, ASCs expressed mRNA and protein of von Willebrand factor (vWF). The degree of ECs differentiation of ASCs was consistently decreased as fibrinogen concentration increase. Fibrin may be used as biomatrix to promote differentiation of ASCs into ECs for tissue engineering.


2021 ◽  
Vol 22 (17) ◽  
pp. 9581
Author(s):  
Alessandro Pirosa ◽  
Esma Bahar Tankus ◽  
Andrea Mainardi ◽  
Paola Occhetta ◽  
Laura Dönges ◽  
...  

The subchondral bone and its associated vasculature play an important role in the onset of osteoarthritis (OA). Integration of different aspects of the OA environment into multi-cellular and complex human, in vitro models is therefore needed to properly represent the pathology. In this study, we exploited a mesenchymal stromal cell line/endothelial cell co-culture to produce an in vitro human model of vascularized osteogenic tissue. A cocktail of inflammatory cytokines, or conditioned medium from mechanically-induced OA engineered microcartilage, was administered to this vascularized bone model to mimic the inflamed OA environment, hypothesizing that these treatments could induce the onset of specific pathological traits. Exposure to the inflammatory factors led to increased network formation by endothelial cells, reminiscent of the abnormal angiogenesis found in OA subchondral bone, demineralization of the constructs, and increased collagen production, signs of OA related bone sclerosis. Furthermore, inflammation led to augmented expression of osteogenic (alkaline phosphatase (ALP) and osteocalcin (OCN)) and angiogenic (vascular endothelial growth factor (VEGF)) genes. The treatment, with a conditioned medium from the mechanically-induced OA engineered microcartilage, also caused increased demineralization and expression of ALP, OCN, ADAMTS5, and VEGF; however, changes in network formation by endothelial cells were not observed in this second case, suggesting a possible different mechanism of action in inducing OA-like phenotypes. We propose that this vascularized bone model could represent a first step for the in vitro study of bone changes under OA mimicking conditions and possibly serve as a tool in testing anti-OA drugs.


Author(s):  
Joshua P. Temple ◽  
Daphne L. Hutton ◽  
Ben P. Hung ◽  
Pinar Yilgor Huri ◽  
Colin A. Cook ◽  
...  

2020 ◽  
Author(s):  
Dong Nyoung Heo ◽  
Bugra Ayan ◽  
Madhuri Dey ◽  
Dishary Banerjee ◽  
Hwabok Wee ◽  
...  

AbstractConventional top-down approaches in tissue engineering involving cell seeding on scaffolds have been widely used in bone engineering applications. However, scaffold-based bone tissue constructs have had limited clinical translation due to constrains in supporting scaffolds, minimal flexibility in tuning scaffold degradation, and low achievable cell seeding density as compared with native bone tissue. Here, we demonstrate a pragmatic and scalable bottom-up method, inspired from embryonic developmental biology, to build three-dimensional (3D) scaffold-free constructs using spheroids as building blocks. Human umbilical vein endothelial cells (HUVECs) were introduced to human mesenchymal stem cells (hMSCs) (hMSC/HUVEC) and spheroids were fabricated by an aggregate culture system. Bone tissue was generated by induction of osteogenic differentiation in hMSC/HUVEC spheroids for 10 days, with enhanced osteogenic differentiation and cell viability in the core of the spheroids compared to hMSC-only spheroids. Aspiration-assisted bioprinting (AAB) is a new bioprinting technique which allows precise positioning of spheroids (11% with respect to the spheroid diameter) by employing aspiration to lift individual spheroids and bioprint them onto a hydrogel. AAB facilitated bioprinting of scaffold-free bone tissue constructs using the pre-differentiated hMSC/HUVEC spheroids. These constructs demonstrated negligible changes in their shape for two days after bioprinting owing to the reduced proliferative potential of differentiated stem cells. Bioprinted bone tissues showed interconnectivity with actin-filament formation and high expression of osteogenic and endothelial-specific gene factors. This study thus presents a viable approach for 3D bioprinting of complex-shaped geometries using spheroids as building blocks, which can be used for various applications including but not limited to, tissue engineering, organ-on-a-chip and microfluidic devices, drug screening and, disease modeling.


2020 ◽  
Author(s):  
Curtis G. Jones ◽  
Tianjiao Huang ◽  
Jay H. Chung ◽  
Chengpeng Chen

<p>Because dysfunctions of endothelial cells are involved in many pathologies, <i>in vitro </i>endothelial cell models for pathophysiological and pharmaceutical studies have been a valuable research tool. Although numerous microfluidic-based endothelial models have been reported, they had the cells cultured on a flat surface without considering the possible 3D structure of the native ECM. Endothelial cells rest on the basement membrane <i>in vivo</i>, which contains an aligned microfibrous topography. To better understand and model the cells, it is necessary to know if and how the fibrous topography can affect endothelial functions. With conventional fully integrated microfluidic apparatus, it is difficult to include additional topographies in a microchannel. Therefore, we developed a modular microfluidic system by 3D-printing and electrospinning, which enabled easy integration and switching of desired ECM topographies. Also, with standardized designs, the system allowed for high flow rates up to 4000 µL/min, which covered the full shear stress range for endothelial studies. We found that the aligned fibrous topography on the ECM altered arginine metabolism in endothelial cells, and thus increased nitric oxide production. To the best of our knowledge, this is the most versatile endothelial model that has been reported, and the new knowledge generated thereby lays a groundwork for future endothelial research and modeling. </p>


2020 ◽  
Author(s):  
Curtis G. Jones ◽  
Tianjiao Huang ◽  
Jay H. Chung ◽  
Chengpeng Chen

<p>Because dysfunctions of endothelial cells are involved in many pathologies, <i>in vitro </i>endothelial cell models for pathophysiological and pharmaceutical studies have been a valuable research tool. Although numerous microfluidic-based endothelial models have been reported, they had the cells cultured on a flat surface without considering the possible 3D structure of the native ECM. Endothelial cells rest on the basement membrane <i>in vivo</i>, which contains an aligned microfibrous topography. To better understand and model the cells, it is necessary to know if and how the fibrous topography can affect endothelial functions. With conventional fully integrated microfluidic apparatus, it is difficult to include additional topographies in a microchannel. Therefore, we developed a modular microfluidic system by 3D-printing and electrospinning, which enabled easy integration and switching of desired ECM topographies. Also, with standardized designs, the system allowed for high flow rates up to 4000 µL/min, which covered the full shear stress range for endothelial studies. We found that the aligned fibrous topography on the ECM altered arginine metabolism in endothelial cells, and thus increased nitric oxide production. To the best of our knowledge, this is the most versatile endothelial model that has been reported, and the new knowledge generated thereby lays a groundwork for future endothelial research and modeling. </p>


2016 ◽  
Vol 32 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Afra Hadjizadeh ◽  
Davod Mohebbi-Kalhori

Fabrication of a pre-vascularized tissue in vitro is an extensive research activity. The idea behind this approach is that a network of newly formed micro-vessels may be engineered in vitro by the seeding of a scaffold with endothelial cells. To this aim, understanding the effect of physicochemical properties of the scaffolding material and the method of cell seeding, in regulating endothelial cells’ behavior in the in vitro constructs, is an emerging requirement. In this study, the effect of interfacial self-assembly and contact guidance for the endothelial cell behavior and angiogenic network formation have been studied. This has been done by the fabrication of in vitro three-dimensional tissue constructs, using multilayer surface-modified polymer fibers, and two different methods of cell seeding by human umbilical vein endothelial cells. In the first method, human umbilical vein endothelial cells, fibers, and fibrin gel matrix were combined simultaneously. In the second method, the human umbilical vein endothelial cells and fibers, having various surface coatings, were sandwiched between two layers of fibrin gel matrix with or without fibroblast cell monolayer over the fibrin gel. In the optimal conditions, the effect of fibers in conjunction with the interfacial self-assembly enhanced a tube-like and interconnected network structure formation. This design could therefore have a major impact in the generation of the pre-vascularized tissue-engineered constructs.


Author(s):  
Silvia Panseri ◽  
Monica Montesi ◽  
Dominique Hautcoeur ◽  
Samuele M. Dozio ◽  
Shaan Chamary ◽  
...  

AbstractBiomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments, looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in the inner spongy structure.


2021 ◽  
Author(s):  
Xiongcheng Xu ◽  
Long Xiao ◽  
Yanmei Xu ◽  
Jin Zhuo ◽  
Xue Yang ◽  
...  

Abstract Critical oral-maxillofacial bone defects, damaged by trauma and tumors, not only affect the physiological functions and mental health of patients but are also highly challenging to reconstruct. Personalized biomaterials customized by 3D printing technology have the potential to match oral-maxillofacial bone repair and regeneration requirements. Laponite nanosilicates have been added to biomaterials to achieve biofunctional modification owing to their excellent biocompatibility and bioactivity. Herein, porous nanosilicate-functionalized polycaprolactone (PCL/LAP) was fabricated by 3D printing technology, and its bioactivities in bone regeneration were investigated in vitro and in vivo. In vitro experiments demonstrated that PCL/LAP exhibited good cytocompatibility and enhanced the viability of BMSCs. PCL/LAP functioned to stimulate osteogenic differentiation of BMSCs at the mRNA and protein levels and elevated angiogenic gene expression and cytokine secretion. Moreover, BMSCs cultured on PCL/LAP promoted the angiogenesis potential of endothelial cells by angiogenic cytokine secretion. Then, PCL/LAP scaffolds were implanted into the calvarial defect model. Toxicological safety of PCL/LAP was confirmed, and significant enhancement of vascularized bone formation was observed. Taken together, 3D-printed PCL/LAP scaffolds with brilliant osteogenesis to enhance bone regeneration could be envisaged as an outstanding bone substitute for a promising change in oral-maxillofacial bone defect reconstruction.


Sign in / Sign up

Export Citation Format

Share Document