scholarly journals Interpenetrating Vinylester/Epoxy Resins Reinforced by Flax Fibre Mat

2003 ◽  
Vol 12 (3) ◽  
pp. 096369350301200 ◽  
Author(s):  
J. S. Szabo ◽  
G. Romhany ◽  
T. Czigany ◽  
J. Karger-Kocsis

Vinylester/epoxy (VE/EP) hybrid resins of interpenetrating network (IPN) structure were reinforced by needled flax fibre mat. The flax content of the composites was kept constant (20 wt%) whereas the VE/EP ratio varied (70/30, 50/50, and 30/70). The mechanical properties of the composites, produced by resin transfer moulding, were determined in tensile and flexural loading. The mechanical anisotropy detected was traced to the orientation of the flax fibres during carding. The higher was the VE content of the hybrid IPN resin the better the mechanical performance was.

Author(s):  
Bojan Poletanovic ◽  
Katalin Kopecsko ◽  
Ildikó Merta

The aim of this study was to examine the influence of flax fibre protection with the linseed oil and a matrix modification with cement substitution with metakaolin (in 10wt% and 15wt%) on the mechanical properties of cement-based mortars under severe environmental conditions of freeze/thaw cycles. Cement-based mortars (with the dimension of 40x40x160 mm3) were reinforced by 10mm long discrete flax fibres (Linumusitatissimum) and exposed to 51 freeze/thaw cycles under laboratory condition. Their compressive and flexural strengths, as well as specific energy absorption capacity were measured after freeze/thaw cycles and compared to the results of mortars cured for same time in water. Under freeze/thaw cycles mortars reinforced with linseed oil-treated fibres showed the same range of degradation of the compressive and flexural strengths, however, a more pronounced degradation of energy absorption capacity compared to non-treated fibre reinforced mortars was observed. The matrix modification, by partial cement substitution with metakaolin showed optimistic results under freeze/thaw cycles. The compressive strength when cement was partially substituted with metakaolin (in both dosages) increased whereas the flexural strength was slightly lower in case of 10wt% substitution and markedly lower under higher (15wt%) cement substitution. The most relevant is that the decrease of the energy absorption capacity of the fibre reinforced mortar was completely prevented when cement was substituted with metakaolin. It is shown that the energy absorption of the non-treated fibre reinforced mortars increases by 27% when cement was substituted with metakaolin (both 10wt% and 15wt%).


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
E. Muñoz ◽  
J. A. García-Manrique

In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM) process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt%) were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.


2011 ◽  
Vol 675-677 ◽  
pp. 427-430 ◽  
Author(s):  
Jin Hua Jiang ◽  
Ze Xing Wang ◽  
Nan Liang Chen

In the past decade, natural fibre composites with thermoplastic matrices had attracted many composites manufactures for the superiority of lightweight and low-cost. A major challenge for natural fibre composites was to achieve high mechanical performance at a competitive price. Composites constructed from yarn and fabric structure preforms were better than composites made from random nonwoven mats. However, the twist structure of conventional ring spun yarns prevented the full utilization of fibre mechanical properties in the final composites. In this paper, the wrapped yarns were produced by wrap spun method with flax and polypropylene (PP), in which all flax fibres were twistless, then woven to be fabric preforms. The PP fibres served as a carrier for flax fibres during processing and became the polymer matrix in the final composites. The homogenous distribution of fibre and thermoplastic matrix in preforms could be achieved before hot pressing, so that not lead to impregnate difficultly, and prevented damage to the reinforced nature fibres during processing. Composites made from the wrapped yarn demonstrated significant tensile and peeling properties. The fabric structures (include plain, twill, and basket weave) and yarn tensile orientation (in 0°, 90°, 45°), had great influence on tensile strength and elongation of preforms. The cavity thickness of hot pressing mould had different influence on the tensile strength and peeling strength of thermoplastic composites, and the mechanical properties were superior when the thickness was 0.8-1.2 mm. The microstructure of thermoplastic composites showed uniform infiltration between layers, and had good bonding interface between flax fibre and PP matrix in composites.


Author(s):  
Salvatore Mannino ◽  
Alberta Latteri ◽  
Giuseppe Saccullo ◽  
Rey Banatao ◽  
Stefan Pastine ◽  
...  

2018 ◽  
Vol 26 (3(129)) ◽  
pp. 93-97 ◽  
Author(s):  
Cristian Lozano Tafur ◽  
Edgar Espejo Mora ◽  
Rodolfo Rodríguez Baracaldo

A study on the effect of the vacuum assisted resin transfer moulding (VARTM) manufacturing process on the mechanical properties of cotton/epoxy composite is presented in this investigation. Woven cotton was used as reinforcing material embedded in epoxy resin. The woven cotton was treated with sodium hydroxide for one hour at concentrations of 0% to 20%. The tensile test showed that the untreated material had the highest ultimate strength and Young’s modulus. Observation of the fracture surface by scan electronic microscopy (SEM) was compared to the hand lay-up process as well as the results of the tensile test. The comparison showed that the VARTM process presents better mechanical properties than the hand lay-up process due to the reduction in discontinuities observed by means of optical microscopy.


BIBECHANA ◽  
2018 ◽  
Vol 16 ◽  
pp. 196-203 ◽  
Author(s):  
Shankar P Khatiwada ◽  
Sabu Thomas ◽  
Jean Marc Saiter ◽  
Ralf Lach ◽  
Rameshwar Adhikari

We investigate the ways of improving thermal and mechanical properties of diglycidyl ether of bisphenol-A (DGEBA) based thermoset resin using diaminodiphenylsulphone (DDS) as hardener and using epoxidized polystyrene/polybutadiene-based triblock copolymers as modifier. The epoxidation was performed. The targeted chemical modification using meta-chloroperoxybenzoic acid (m-CPBA) of the copolymer was performed whereby the epoxidation of the butadiene chains mainly took place at 1,4 linkages. The modification copolymer was found to contribute in enhancing the mechanical performance of the blends with epoxy resin. The results indicated the formation of nanostructured morphology in the blends attributable to their enhanced impact strength.BIBECHANA 16 (2019) 196-203


Sign in / Sign up

Export Citation Format

Share Document