Evaluation of the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using near infrared spectroscopy

2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.

2015 ◽  
Vol 23 (2) ◽  
pp. 93-102 ◽  
Author(s):  
Gifty E. Acquah ◽  
Brian K. Via ◽  
Oladiran O. Fasina ◽  
Lori G. Eckhardt

Forest biomass will play a key role as a feedstock for bioproducts as the bioeconomy develops. Rapid assessment of this heterogeneous resource will help determine its suitability as feedstock for specific applications, aid in feedstock improvement programmes and enable better process control that will optimise the biorefinery process. In this study, near infrared spectroscopy coupled with partial least-squares regression was used to predict important chemical and thermal reactivity properties of biomass made up of needles, twigs, branches, bark and wood of Pinus taeda (loblolly pine). Models developed with the raw spectra for property prediction used between three and eight factors to yield R2 values ranging from a low of 0.34 for higher heat values to a high of 0.92 for volatile matter. Pretreating the raw spectra with first derivatives improved the fit statistics for all properties (i.e. min 0.57, max 0.92; with two or three factors). The best-performing models were for extractives, lignin, glucose, cellulose, volatile matter and fixed carbon ( R2 ≥ 0.80, residual predictive deviation/ratio of performance to deviation ≥1.5). This study provided the capacity to predict multiple chemical and thermal/energy traits from a single spectrum across an array of materials that differ considerably in chemistry type and distribution. Models developed should be able to rapidly predict the studied properties of similar biomass types. This will be useful in rapidly allocating feedstocks that optimise biomass conversion technologies.


2019 ◽  
Vol 59 (6) ◽  
pp. 1190 ◽  
Author(s):  
A. Bahri ◽  
S. Nawar ◽  
H. Selmi ◽  
M. Amraoui ◽  
H. Rouissi ◽  
...  

Rapid measurement optical techniques have the advantage over traditional methods of being faster and non-destructive. In this work visible and near-infrared spectroscopy (vis-NIRS) was used to investigate differences between measured values of key milk properties (e.g. fat, protein and lactose) in 30 samples of ewes milk according to three feed systems; faba beans, field peas and control diet. A mobile fibre-optic vis-NIR spectrophotometer (350–2500 nm) was used to collect reflectance spectra from milk samples. Principal component analysis was used to explore differences between milk samples according to the feed supplied, and a partial least-squares regression and random forest regression were adopted to develop calibration models for the prediction of milk properties. Results of the principal component analysis showed clear separation between the three groups of milk samples according to the diet of the ewes throughout the lactation period. Milk fat, protein and lactose were predicted with good accuracy by means of partial least-squares regression (R2 = 0.70–0.83 and ratio of prediction deviation, which is the ratio of standard deviation to root mean square error of prediction = 1.85–2.44). However, the best prediction results were obtained with random forest regression models (R2 = 0.86–0.90; ratio of prediction deviation = 2.73–3.26). The adoption of the vis-NIRS coupled with multivariate modelling tools can be recommended for exploring to differences between milk samples according to different feed systems, and to predict key milk properties, based particularly on the random forest regression modelling technique.


2021 ◽  
Vol 271 ◽  
pp. 03067
Author(s):  
Xiaohong He ◽  
Zhihong Song ◽  
Haifei Shang ◽  
Silang Yang ◽  
Lujing Wu ◽  
...  

Currently, the laboratory diagnostic tests available for HIV-1 viral infection are mainly based on serological testing which relies on enzyme-linked immunosorbent assay (ELISA) for blood HIV antigen detection and reverse transcription polymerase chain reaction (RT-PCR) for HIV specific RNA sequence identification. However, these methods are expensive and time-consuming, and suffer from false positive and/or false negative results. Thus, there is an urgent need for developing a cost effective, rapid and accurate diagnostic method for HIV-1 infection. In order to reduce the barriers for effective diagnosis, a near-infrared spectroscopy (NIR) method was used to detect the HIV-1 virus in human serum, specifically, three absorption peaks with dose-dependent at 1582nm, 1810nm and 2363nm were found by multiple FBiPLSR test analysis for HIV-nano and HIV-EGFP, but not for MLV. Therefore, we recommend the use of 1582nm, 1810nm and 2363nm as the characteristic spectrum peak, for early screening and rapid diagnosis of serum HIV.


2018 ◽  
Vol 11 (7) ◽  
pp. e201700365 ◽  
Author(s):  
Raphael Henn ◽  
Christian G. Kirchler ◽  
Zora L. Schirmeister ◽  
Andreas Roth ◽  
Werner Mäntele ◽  
...  

2004 ◽  
Vol 509 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Consuelo Pizarro ◽  
Isabel Esteban-Dı́ez ◽  
Antonio-José Nistal ◽  
José-Marı́a González-Sáiz

FLORESTA ◽  
2010 ◽  
Vol 40 (3) ◽  
Author(s):  
Paulo Ricardo Gherardi Hein ◽  
José Tarcísio Lima ◽  
Gilles Chaix Gilles Chaix

A espectroscopia no infravermelho próximo (NIRS) é uma técnica não-destrutiva, rápida e utilizada para avaliação, caracterização e classificação de materiais, sobretudo de origem biológica. A obtenção de informações contida nos espectros NIR é complexa e requer a utilização de métodos quimiométricos. Assim, por meio de regressão multivariada, os espectros de absorbância podem ser associados às propriedades da madeira, tornando possível a sua predição em amostras desconhecidas. Existem algumas ferramentas quimiométricas que melhoram o ajuste dos modelos preditivos. Assim, o objetivo deste trabalho foi simular regressões dos mínimos quadrados parciais baseados nas informações espectrais e de laboratório e estudar a influência da aplicação de tratamentos matemáticos, do descarte de amostras anômalas e da seleção de comprimentos de onda no ajuste dos modelos para estimativa da densidade básica e do módulo de elasticidade em ensaio de compressão paralela às fibras da madeira de Eucalyptus. A aplicação da primeira e segunda derivada nos espectros, o descarte de amostras anômalas e a seleção de algumas das variáveis espectrais melhorou significativamente o ajuste do modelo, reduzindo o erro padrão e aumentando o coeficiente de determinação e a relação de desempenho do desvio.Palavras-chave:  Espectroscopia no infravermelho próximo; predição; densidade básica; MOE; madeira; Eucalyptus. AbstractOptimization of calibrations based on near infrared spectroscopy for estimation of Eucalyptus wood properties. Near infrared spectroscopy (NIRS) is a non-destructive technique used for rapid evaluation, characterization and classification of biological materials. The extraction of the information contained in the NIR spectrum is complex and requires the use of chemo metric methods. Thus, by means of multivariate regression, the absorbance spectra are correlated to wood properties, making possible the prediction in unknown samples. There are some chemo metric tools that can improve the adjustment of the predictive models. The aim of this work was to simulate partial least squares regression based on NIR spectra and laboratory data and to study the influence of the application of mathematical treatment, the removal of outliers and the wavelengths selection in the adjustment of models to estimate the density and modulus of elasticity in Eucalyptus wood. The use of the first and second derivative spectra, the disposal of outliers, and the variables selection improved significantly the model fit, reducing the standard error and increasing the coefficient of determination and the ratio of performance to deviation.Keywords: Near infrared; spectroscopy; prediction; density; MOE; wood; Eucalyptus.


Sign in / Sign up

Export Citation Format

Share Document