A comparison of point and imaging visible-near infrared spectroscopy for determining soil organic carbon

2018 ◽  
Vol 26 (2) ◽  
pp. 133-146 ◽  
Author(s):  
Mohammad Sadegh Askari ◽  
Sharon M O'Rourke ◽  
Nicholas M Holden

This study evaluated whether the accuracy of soil organic carbon measurement by laboratory hyperspectral imaging can match that of standard point spectroscopy operating in the visible–near infrared. Hyperspectral imaging allows a greater amount of spectral information to be collected from the soil sample compared to standard spectroscopy, accounting for greater sample representation. A total of 375 representative Irish soils were scanned by two-point spectrometers (a Foss NIR Systems 6500 labelled S-1 and a Varian FT-IR 3100 labelled S-2) and two laboratory hyperspectral imaging systems (two push broom line-scanning hyperspectral imaging systems manufactured by DV optics and Spectral Imaging Ltd, respectively, labelled S-3 and S-4). The objectives were (a) to compare the predictive ability of spectral datasets for soil organic carbon prediction for each instrument evaluated and (b) to assess the impact of imposing a common wavelength range and spectral resolution on soil organic carbon model accuracy. These objectives examined the predictive ability of spectral datasets for soil organic carbon prediction based on optimal settings of each instrument in (a) and introduced a constraint in wavelength range and spectral resolution to achieve common settings for instruments in (b). Based on optimal settings for each instrument, the deviation (root-mean square error of prediction) from the best fit line between laboratory measured and predicted soil organic carbon, ranked the instruments as S-1 (26.3 g kg−1) < S-2 (29.4 g kg−1) < S-3 (34.3 g kg−1) < S-4 (41.1 g kg−1). The S-1 model outperformed in all partial least squares regression performance indicators, and across all spectral ranges, and produced the most favourable outcomes in means testing, variance testing and identification of significant variables. It is assumed that a larger wavelength range produced more accurate soil organic carbon predictions for S-1 and S-2. Under common instrument settings, the prediction accuracy for S-3 that was almost equal to S-1. It is concluded that under standard operating procedures, greater soil sample representation captured by hyperspectral imaging can equal the quality of the spectra from point spectroscopy. This result is important for the development of laboratory hyperspectral imaging for soil image analysis.

Geoderma ◽  
2012 ◽  
Vol 183-184 ◽  
pp. 41-48 ◽  
Author(s):  
A.H. Cambule ◽  
D.G. Rossiter ◽  
J.J. Stoorvogel ◽  
E.M.A. Smaling

2014 ◽  
Vol 7 (3) ◽  
pp. 1197-1210 ◽  
Author(s):  
M. Nussbaum ◽  
A. Papritz ◽  
A. Baltensweiler ◽  
L. Walthert

Abstract. Accurate estimates of soil organic carbon (SOC) stocks are required to quantify carbon sources and sinks caused by land use change at national scale. This study presents a novel robust kriging method to precisely estimate regional and national mean SOC stocks, along with truthful standard errors. We used this new approach to estimate mean forest SOC stock for Switzerland and for its five main ecoregions. Using data of 1033 forest soil profiles, we modelled stocks of two compartments (0–30, 0–100 cm depth) of mineral soils. Log-normal regression models that accounted for correlation between SOC stocks and environmental covariates and residual (spatial) auto-correlation were fitted by a newly developed robust restricted maximum likelihood method, which is insensitive to outliers in the data. Precipitation, near-infrared reflectance, topographic and aggregated information of a soil and a geotechnical map were retained in the models. Both models showed weak but significant residual autocorrelation. The predictive power of the fitted models, evaluated by comparing predictions with independent data of 175 soil profiles, was moderate (robust R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–100 cm). Prediction standard errors (SE), validated by comparing point prediction intervals with data, proved to be conservative. Using the fitted models, we mapped forest SOC stock by robust external-drift point kriging at high resolution across Switzerland. Predicted mean stocks in 0–30 and 0–100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2) and 12.58 kg m−2 (SE 0.24 kg m−2), respectively. Hence, topsoils store about 64% of SOC stocks down to 100 cm depth. Previous studies underestimated SOC stocks of topsoil slightly and those of subsoils strongly. The comparison further revealed that our estimates have substantially smaller SE than previous estimates.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 261 ◽  
Author(s):  
Maria Marques ◽  
Ana Álvarez ◽  
Pilar Carral ◽  
Iris Esparza ◽  
Blanca Sastre ◽  
...  

Contents of soil organic carbon (SOC), gypsum, CaCO3, and quartz, among others, were analyzed and related to reflectance features in visible and near-infrared (VIS/NIR) range, using partial least square regression (PLSR) in ParLes software. Soil samples come from a sloping olive grove managed by frequent tillage in a gypsiferous area of Central Spain. Samples were collected in three different layers, at 0–10, 10–20 and 20–30 cm depth (IPCC guidelines for Greenhouse Gas Inventories Programme in 2006). Analyses were performed by C Loss-On-Ignition, X-ray diffraction and water content by the Richards plates method. Significant differences for SOC, gypsum, and CaCO3 were found between layers; similarly, soil reflectance for 30 cm depth layers was higher. The resulting PLSR models (60 samples for calibration and 30 independent samples for validation) yielded good predictions for SOC (R2 = 0.74), moderate prediction ability for gypsum and were not accurate for the rest of rest of soil components. Importantly, SOC content was related to water available capacity. Soils with high reflectance features held c.a. 40% less water than soils with less reflectance. Therefore, higher reflectance can be related to degradation in gypsiferous soil. The starting point of soil degradation and further evolution could be established and mapped through remote sensing techniques for policy decision making.


Author(s):  
Ahmed M Rady ◽  
Daniel E Guyer ◽  
Nicholas J Watson

Abstract Sugar content is one of the most important properties of potato tubers as it directly affects their processing and the final product quality, especially for fried products. In this study, data obtained from spectroscopic (interactance and reflectance) and hyperspectral imaging systems were used individually or fused to develop non-cultivar nor growing season-specific regression and classification models for potato tubers based on glucose and sucrose concentration. Data was acquired over three growing seasons for two potato cultivars. The most influential wavelengths were selected from the imaging systems using interval partial least squares for regression and sequential forward selection for classification. Hyperspectral imaging showed the highest regression performance for glucose with a correlation coefficient (ratio of performance to deviation) or r(RPD) of 91.8(2.41) which increased to 94%(2.91) when the data was fused with the interactance data. The sucrose regression results had the highest accuracy using data obtained from the interactance system with r(RPD) values of 74.5%(1.40) that increased to 84.4%(1.82) when the data was fused with the reflectance data. Classification was performed to identify tubers with either high or low sugar content. Classification performance showed accuracy values as high as 95% for glucose and 80.1% for sucrose using hyperspectral imaging, with no noticeable improvement when data was fused from the other spectroscopic systems. When testing the robustness of the developed models over different seasons, it was found that the regression models had r(RPD) values of 55(1.19)–90.3%(2.34) for glucose and 35.8(1.07)–82.2%(1.29) for sucrose. Results obtained in this study demonstrate the feasibility of developing a rapid monitoring system using multispectral imaging and data fusion methods for online evaluation of potato sugar content.


Sign in / Sign up

Export Citation Format

Share Document