Developing near infrared spectroscopy models for predicting chemistry and responses to stress in Pinus radiata (D. Don)

2021 ◽  
pp. 096703352110065
Author(s):  
Judith S Nantongo ◽  
BM Potts ◽  
T Rodemann ◽  
H Fitzgerald ◽  
NW Davies ◽  
...  

Incorporating chemical traits in breeding requires the estimation of quantitative genetic parameters, especially the levels of additive genetic variation. This requires large numbers of samples from pedigreed populations. Conventional wet chemistry procedures for chemotyping are slow, expensive and not a practical option. This study focuses on the chemical variation in Pinus radiata, where the near infrared (NIR) spectral properties of the needles, bark and roots before and after exposure to methyl jasmonate (MJ) and artificial bark stripping (strip) treatments were investigated as an alternative approach. The aim was to test the capability of NIR spectroscopy to (i) discriminate samples exposed to MJ and strip assessed 7, 14, 21 and 28 days after treatment from untreated samples, and (ii) quantitatively predict individual chemical compounds in the three plant parts. Using principal components analysis (PCA) on the spectral data, we differentiated between treated and untreated samples for the individual plant parts. Based on partial least squares–discriminant analysis (PLS-DA) models, the best discrimination of treated from non-treated samples with the smallest root mean square error cross-validation (RMSECV) and highest coefficient of determination (r2) was achieved in the fresh needles (r2 = 0.81, RMSECV= 0.24) and fresh inner bark (r2 = 0.79, RMSECV = 0.25) for MJ-treated samples 14 days and 21 days after treatment, respectively. Using partial least squares regression, models for individual compounds gave high (r2), residual predictive deviation (RPD), lab to NIR error (PRL) or range error ratio (RER) for fructose (r2 = 0.84, RPD = 1.5, PRL = 0.71, RER = 7.25) and glucose (r2 = 0.83, RPD = 1.9, PRL = 1.14, RER = 8.50) and several diterpenoids. This provides an optimistic outlook for the use of NIR spectroscopy-based models for the larger-scale prediction of the P. radiata chemistry needed for quantitative genetic studies.

2001 ◽  
Vol 9 (2) ◽  
pp. 133-139 ◽  
Author(s):  
L.G. Thygesen ◽  
S.B. Engelsen ◽  
M.H. Madsen ◽  
O.B. Sørensen

A set of 97 potato starch samples with a phosphate content corresponding to a phosphorus content between 0.029 and 0.11 g per 100 g dry matter was analysed using a Rapid Visco Analyzer (RVA) and near infrared (NIR) spectroscopy, (700–2498 nm). NIR-based prediction of phosphate content was possible with a root mean square error of cross-validation ( RMSECV) of 0.006% using PLSR (partial least squares regression). However, the NIR/PLSR model relied on weak spectral signals, and was highly sensitive to sample preparation. The best prediction of phosphate content from the RVA viscograms was a linear regression model based on the RVA variable Breakdown, which gave a RMSECV of 0.008%. NIR/PLSR prediction of the RVA variables Peak viscosity and Breakdown was successful, probably because they were highly related to phosphate content in the present data. Prediction of the other RVA variables from NIR/PLSR was mediocre (Through, Final Viscosity) or not possible (Setback, Peak time, Pasting temperature).


2020 ◽  
Vol 38 (No. 2) ◽  
pp. 131-136
Author(s):  
Wojciech Poćwiardowski ◽  
Joanna Szulc ◽  
Grażyna Gozdecka

The aim of the study was to elaborate a universal calibration for the near infrared (NIR) spectrophotometer to determine the moisture of various kinds of vegetable seeds. The research was conducted on the seeds of 5 types of vegetables – carrot, parsley, lettuce, radish and beetroot. For the spectra correlation with moisture values, the method of partial least squares regression (PLS) was used. The resulting qualitative indicators of a calibration model (R = 0.9968, Q = 0.8904) confirmed an excellent fit of the obtained calibration to the experimental data. As a result of the study, the possibilities of creating a calibration model for NIR spectrophotometer for non-destructive moisture analysis of various kinds of vegetable seeds was confirmed.<br /><br />


2000 ◽  
Vol 54 (2) ◽  
pp. 294-299 ◽  
Author(s):  
Songbiao Zhang ◽  
Babs R. Soller ◽  
Shubjeet Kaur ◽  
Kristen Perras ◽  
Thomas J. Vander Salm

Hematocrit (Hct), the volume percent of red cells in blood, is monitored routinely for blood donors, surgical patients, and trauma victims and requires blood to be removed from the patient. An accurate, noninvasive method for directly measuring hematocrit on patients is desired for these applications. The feasibility of noninvasive hematocrit measurement by using near-infrared (NIR) spectroscopy and partial least-squares (PLS) techniques was investigated, and methods of in vivo calibration were examined. Twenty Caucasian patients undergoing cardiac surgery on cardiopulmonary bypass were randomly selected to form two study groups. A fiber-optic probe was attached to the patient's forearm, and NIR spectra were continuously collected during surgery. Blood samples were simultaneously collected and reference Hct measurements were made with the spun capillary method. PLS multivariate calibration techniques were applied to investigate the relationship between spectral and Hct changes. Single patient calibration models were developed with good cross-validated estimation of accuracy (∼ 1 Hct%) and trending capability for most patients. Time-dependent system drift, patient temperature, and venous oxygen saturation were not correlated with the hematocrit measurements. Multi-subject models were developed for prediction of independent subjects. These models demonstrated a significant patient-specific offset that was shown to be partially related to spectrometer drift. The remaining offset is attributed to the large spectral variability of patient tissue, and a significantly larger set of patients would be required to adequately model this variability. After the removal of the offset, the cross-validated estimation of accuracy is 2 Hct%.


2020 ◽  
Vol 23 (8) ◽  
pp. 740-756
Author(s):  
Naifei Zhao ◽  
Qingsong Xu ◽  
Man-lai Tang ◽  
Hong Wang

Aim and Objective: Near Infrared (NIR) spectroscopy data are featured by few dozen to many thousands of samples and highly correlated variables. Quantitative analysis of such data usually requires a combination of analytical methods with variable selection or screening methods. Commonly-used variable screening methods fail to recover the true model when (i) some of the variables are highly correlated, and (ii) the sample size is less than the number of relevant variables. In these cases, Partial Least Squares (PLS) regression based approaches can be useful alternatives. Materials and Methods : In this research, a fast variable screening strategy, namely the preconditioned screening for ridge partial least squares regression (PSRPLS), is proposed for modelling NIR spectroscopy data with high-dimensional and highly correlated covariates. Under rather mild assumptions, we prove that using Puffer transformation, the proposed approach successfully transforms the problem of variable screening with highly correlated predictor variables to that of weakly correlated covariates with less extra computational effort. Results: We show that our proposed method leads to theoretically consistent model selection results. Four simulation studies and two real examples are then analyzed to illustrate the effectiveness of the proposed approach. Conclusion: By introducing Puffer transformation, high correlation problem can be mitigated using the PSRPLS procedure we construct. By employing RPLS regression to our approach, it can be made more simple and computational efficient to cope with the situation where model size is larger than the sample size while maintaining a high precision prediction.


2007 ◽  
Vol 15 (4) ◽  
pp. 247-260 ◽  
Author(s):  
Cristina Sousa-Correia ◽  
Ana Alves ◽  
José C. Rodrigues ◽  
Suzana Ferreira-Dias ◽  
José M. Abreu ◽  
...  

The aim of this work was to use Fourier transform near infrared (FT-NIR) spectroscopy and partial least squares regression (PLSR) to estimate the oil content of individual Holm oak ( Quercus sp.) acorn kernels from different trees, sites and years that should be used in the future for molecular marker association studies. Sampling of acorns in two consecutive years (2003 and 2004) and from different sites in Portugal provided independent sample sets. A total of 89 samples (acorn kernels) representative of the natural oil content range were extracted. The results of the analyses performed by three people revealed accuracy of the oil extraction procedure ( n-hexane) and the precision (repeatability) of this method, assessed during a four-day period, gave a standard deviation of 0.1%. Careful wavenumber selection and several steps of validation of the PLSR models led to a final robust model that allowed the precise prediction of the oil content of individual acorns. By using the wavenumber ranges from 5995 to 5323 cm−1 and from 4478 to 4177 cm−1 of the vector normalised spectra, a PLSR model with a coefficient of determination ( r 2) of 0.992 and a root mean square error of cross-validation ( RMSECV) of 0.37% was achieved. The RPD value of about 10 and a bias of almost zero showed that the developed models are good for process control, development, and applied research. Oil content estimation of individual Quercus sp. acorns by FT-NIR and PLSR was shown to be possible. The varying water content detected in the spectra of the milled kernels after drying in similar conditions, within and especially between years, could be handled.


2019 ◽  
Vol 27 (6) ◽  
pp. 424-431 ◽  
Author(s):  
Suttahatai Pochanagone ◽  
Ronnarit Rittiron

The sodium chloride content in the flesh of tuna fish is one of the factors for determining the price in the fishing industry. Titration is a standard method for the analysis of salt and this is time consuming. Near infrared spectroscopy is a potential alternative method for rapid detection without the need for wet chemical assay. Although sodium chloride is infrared inactive, this study investigated the influence of salt on the absorbance of near infrared energy and showed that the sodium chloride content can be determined using changes in the water band at 970 nm. Calibration equations were developed from frozen fish pieces and ground samples using multiple linear regression for the wavelength region of 700–1000 nm. The best result was achieved from frozen samples with a coefficient of determination for the calibration set ([Formula: see text]) = 0.71, standard error of calibration (SEC) = 0.20%, coefficient of determination for the validation set ([Formula: see text]) = 0.64, standard error of prediction (SEP) = 0.26% and bias = − 0.00%. In order to verify the significant variables used to determine infrared inactive sodium chloride, partial least squares regression was performed on frozen samples. The important variable in multiple linear regression and partial least squares regression was the absorbance band at 976 nm attributed to water molecules. The result from partial least squares calibration showed [Formula: see text] = 0.83, SEC = 0.20%, [Formula: see text] = 0.54, SEP = 0.25% and bias = 0.00%. The salt values predicted using the near infrared models were not significantly different from the reference values obtained by the standard titration method at the 95% confidence interval.


2011 ◽  
Vol 49 (No. 5) ◽  
pp. 177-182 ◽  
Author(s):  
S. Kráčmar ◽  
R. Jankovská ◽  
K. Šustová ◽  
J. Kuchtík ◽  
L. Zeman

This paper deals with changes in the basic composition of sheep colostrum within the first 72 hours after parturition on the one hand and with the possibility of determining the major components of sheep colostrum by near-infrared spectroscopy on the other. Levels of essential, nonessential and total amino acids in sheep colostrum were determined by near-infrared reflectance spectroscopy (NIRS). ). For each component, sets of 90 samples were used to calibrate the instrument by means of a modified partial least-squares regression. The values of correlation coefficients (r) were as follows: 0.979 for Thr; 0.954 for Val; 0.968 for Leu; 0.918 for Ile; 0.946 for Lys; 0.908 for Arg; 0.845 for His; 0.999 for Trp; 0.915 for Phe; 0.909 for Met; 0.939 for Cys; 0.911 for &Sigma;met + Cys; 0.933 for Tyr; 0.945 for Asp; 0.935 for Glu; 0.986 for Ser; 0.985 for Pro; 0.957 for Gly; 0.949 for Ala; 0.940 for &Sigma;EAA; 0.958 for &Sigma;NEAA and 0.977 for &Sigma;AA. Partial least-squares (PLS) regression was used to develop calibration models for examined samples of sheep colostrum. When using the NIRS method, the following correlation coefficients were calculated: Thr (0.959), Val (0.912), Leu (0.936), Ile (0.855), Lys (0.903), Arg (0.853), His (0.717), Trp (0.667), Phe (0.854), Met (0.867), Cys (0.895), &Sigma;met + Cys (0.868), Tyr (0.886), Asp (0.910), Glu (0.882), Ser (0.968), Pro (0.968), Gly (0.923), Ala (0.916), &Sigma;EAA (0.901), &Sigma;NEAA (0.923) and &Sigma;AA (0.943). Calibration was tested using the same set of samples.NIRS results were compared with reference data and no significant differences between them were found (P = 0.05). Calibration and validation models were constructed in the same way.Results of this study indicate that NIR spectroscopy can be used for a rapid analysis of amino acid contents in sheep colostrum. &nbsp;


2002 ◽  
Vol 10 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Mulualem Tigabu ◽  
Per Christer Odén

Near infrared (NIR) spectroscopy was used to classify insect-infested and sound seeds of a tropical multipurpose tree, Cordia africana Lam. A calibration model derived by partial least squares regression of orthogonal signal corrected spectra resulted in a 100% classification rate. Difference spectrum and partial least squares weight indicated that absorbance differences between insect-infested and sound seeds might have been due to differences in composition of chitin and cuticular lipid components as well as moisture content. The result shows the possibility of using NIR spectroscopy in the seed cleaning process in the future provided that appropriate sorting instruments are developed.


2019 ◽  
Vol 2 (1) ◽  
pp. 43-55
Author(s):  
Joan Espel Grekopoulos

There is an increasing interest in cannabinoids as they are being proved to effectively treat the symptoms of a variety of medical conditions. Commercialization of cannabinoid-based pharmaceutical products is expected to grow in the near future, favored by the recent changes in medical regulations in many developed countries. Hence, robust and reliable analytical methods for determining the content of the active pharmaceutical ingredient will be needed, as this is one of the most relevant parameters for the decision to release the final pharmaceutical product into the market. The aim of this work was to demonstrate that near-infrared (NIR) spectroscopy fulfills the needed requirements for this purpose, as well as to provide a methodology to be applied to other cannabinoid-based products. We present two validated methods for the quantification of different liquid pharma-grade cannabidiol (CBD) formulations based on NIR spectroscopy and partial least squares regression modelling. The methods were constructed and validated with spectra belonging both to production samples and to laboratory samples specifically made for this purpose, and they fulfill European Medicines Agency and International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guideline requirements. These methods allow determining the CBD content with results comparable to the usual method of choice while saving reagent- as well as time-related costs.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jordi Ortuño ◽  
Sokratis Stergiadis ◽  
Anastasios Koidis ◽  
Jo Smith ◽  
Chris Humphrey ◽  
...  

Abstract Background The presence of condensed tannins (CT) in tree fodders entails a series of productive, health and ecological benefits for ruminant nutrition. Current wet analytical methods employed for full CT characterisation are time and resource-consuming, thus limiting its applicability for silvopastoral systems. The development of quick, safe and robust analytical techniques to monitor CT’s full profile is crucial to suitably understand CT variability and biological activity, which would help to develop efficient evidence-based decision-making to maximise CT-derived benefits. The present study investigates the suitability of Fourier-transformed mid-infrared spectroscopy (MIR: 4000–550 cm−1) combined with multivariate analysis to determine CT concentration and structure (mean degree of polymerization—mDP, procyanidins:prodelphidins ratio—PC:PD and cis:trans ratio) in oak, field maple and goat willow foliage, using HCl:Butanol:Acetone:Iron (HBAI) and thiolysis-HPLC as reference methods. Results The MIR spectra obtained were explored firstly using Principal Component Analysis, whereas multivariate calibration models were developed based on partial least-squares regression. MIR showed an excellent prediction capacity for the determination of PC:PD [coefficient of determination for prediction (R2P) = 0.96; ratio of prediction to deviation (RPD) = 5.26, range error ratio (RER) = 14.1] and cis:trans ratio (R2P = 0.95; RPD = 4.24; RER = 13.3); modest for CT quantification (HBAI: R2P = 0.92; RPD = 3.71; RER = 13.1; Thiolysis: R2P = 0.88; RPD = 2.80; RER = 11.5); and weak for mDP (R2P = 0.66; RPD = 1.86; RER = 7.16). Conclusions MIR combined with chemometrics allowed to characterize the full CT profile of tree foliage rapidly, which would help to assess better plant ecology variability and to improve the nutritional management of ruminant livestock.


Sign in / Sign up

Export Citation Format

Share Document