Processing and Mechanical Properties of Ultra-high Molecular Weight Polyethylene Reinforced by Silver Nanoparticles

2017 ◽  
Vol 25 (9) ◽  
pp. 683-688 ◽  
Author(s):  
Xueqin Kang ◽  
Chi Yao ◽  
Lei Qiao ◽  
Gaofeng Ge ◽  
Peizhong Feng

The present study was designed to investigate the mechanical performance of ultra high molecular weight polyethylene (UHMWPE) reinforced by silver nanoparticles. The Ag/UHMWPE nanocomposites were prepared by a plate vulcanizing machine and tested with a contact angle micrometer, UMT friction tester, electronic universal testing machine and MicroXAM three-dimensional profilometer to characterise the wettability, ball indentation hardness, creep resistance, compression properties, and friction and wear performance. A scanning electron microscope (SEM) was employed to describe the morphology of the Ag/UHMWPE nanocomposites surfaces following the friction and wear tests. These results demonstrate that the compressive yield strength, ball indentation hardness and creep resistance increased with an increase in the content of silver nanoparticles. The contact angle of the Ag/UHMWPE nanocomposites with bovine calf serum decreases with an increase in the content of silver nanoparticles and this change increases the wettability of the Ag/UHMWPE nanocomposites. Therefore, the friction coefficient decreases, but the wear mechanism changes from scratch and furrow to fatigue flakes when the mass fraction of silver nanoparticles exceeds 0.3%. The composite with a silver nanoparticles mass fraction of 0.3% exhibits a low friction coefficient and good wear resistance.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xincong Zhou ◽  
Chaozhen Yang ◽  
Jian Huang ◽  
Xueshen Liu ◽  
Da Zhong ◽  
...  

Purpose Ultra-high molecular weight polyethylene (UHMWPE) is adopted in water-lubricated bearings for its excellent performance. This paper aims to investigate the tribological properties of UHMWPE with a molecular weight of 10.2 million (g mol‐1) under different molding temperatures. Design/methodology/approach The UHMWPE samples were prepared by mold pressing under constant pressure and different molding temperatures (140°C, 160°C, 180°C, 200°C, 220°C). The friction and wear tests in water were conducted at the RTEC tribo-tester. Findings The friction coefficient and wear loss decreased first and rose later with the increasing molding temperature. The minimums of the friction coefficient and wear loss were found at the molding temperatures of 200°C. At low melting temperatures, the UHMWPE molecular chains could not unwrap thoroughly, leading to greater abrasive wear. On the other hand, high melting temperatures will cause the UHMWPE molecular chains to break up and decompose. The optimal molding temperatures for UHMWPE were found to be 200°C. Originality/value Findings are of great significance for the design of water-lubricated UHMWPE bearings.


2011 ◽  
Vol 311-313 ◽  
pp. 92-95 ◽  
Author(s):  
Kui Chen ◽  
Tian Yun Zhang ◽  
Wei Wei

Polypropylene/organo-montmorillonite (PP/OMMT) composites were investigated by XRD. Friction and wear behaviors of this composites sliding against GCr15 stainless steel were examined on M-2000 text rig in a ring-on-block configuration. Worn surfaces of PP and its composites were analyzed by SEM. The result shows that PP macromolecule chains have intercalated into OMMT layers and form intercalated nanocomposites. With the increase of mass fraction of OMMT, both wear rate and friction coefficient of composites first decrease then rise. With the increase of load, from 150 N, 200 N to 250 N, wear rate of composites increases, while friction coefficient reduces. The wear mechanisms of composites are connected with the content of OMMT. Composites were dominated by adhesive wear, abrasive wear and adhesive wear accompanied by abrasive wear respectively with the increase of OMMT content.


Author(s):  
Qingling Wang ◽  
Shirong Ge ◽  
Xiaolong Huang ◽  
Sahnhua Qian

It’s important to research on the biotribology of UHMWPE composites for developing the new joint implanted materials and the life of the joint replacements. In this research, UHMWPE-NC composites were prepared using the pressing formation method. The nano-hardness and elastic modulus evaluations of all of UHMWPE-NC composites were obtained by nanoindentation tests (Hysitron, Co.,) with the corresponding load-displacement curves confirming the characteristic properties of these materials. A ball-on disc wear test was run on the Universal Micro-Tribometer (UMT) to investigate the friction and wear behaviors of Si3N4 ceramic cross-sliding against UHMWPE-NC composites in artificial body fluids lubrication.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Hao Liu ◽  
Yunfeng Yan ◽  
...  

Purpose This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE). Design/methodology/approach In this study, the effect of WS2 content on fretting wear performance of UHMWPE was investigated. The fretting wear performance of the UHMWPE and WS2/UHMWPE nanocomposites were evaluated on oscillating reciprocating friction and wear tester. The data of the friction coefficient and the specific wear rate were obtained. The worn surfaces of composites were observed. The transfer film and its component were analyzed. Findings With the addition of 0.5% WS2, the friction coefficient and specific wear rate increased. With the content increased to 1% and 1.5%, the friction coefficient and specific wear rate decreased. The lowest friction coefficient and specific wear rate were obtained with the addition of 1.5% nano-WS2. Continuingly increasing content, the friction coefficient and wear rate increased but lower than that of pure UHMWPE. Research limitations/implications The research indicated the fretting wear performance related to the content of nano-WS2 with the incorporation of WS2 into UHMWPE. Practical implications The result may help to choose the appropriate content. Originality/value The main originality of the research is to reveal the fretting behavior of UHMWPE and WS2/UHMWPE nanocomposites. It makes us realize the nano-WS2 had an effect on the fretting wear performance of UHMWPE. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0151/


2016 ◽  
Vol 30 (4) ◽  
pp. 564-577 ◽  
Author(s):  
Bin Guo ◽  
Li-Jian Wang ◽  
Peng Yin ◽  
Ben-Gang Li ◽  
Pan-Xin Li

The ultra-high molecular weight polyethylene (UHMWPE) fibers, as the fibrous morphology of polyethylene (PE), were first used to reinforce thermoplastic starch (TPS) by a twin screw extruder. The influence of the UHMWPE content on the mechanical and dynamic mechanical thermal properties, thermal stability, contact angle, torque rheological properties, and fractured surface morphology of the UHMWPE/TPS composites was studied in detail. We found that the UHMWPE fibers were well dispersed in the TPS matrix, and the mechanical properties and water resistance of the composites improved significantly. Especially, the incorporation of UHMWPE fibers at a content of 2 wt% generated a composite with better performance (tensile strength of 8.78 MPa and contact angle of 80.2°).


2012 ◽  
Vol 549 ◽  
pp. 670-673
Author(s):  
Gang Wu ◽  
Shuang Kun Chen ◽  
Hong Ling Qin ◽  
Chun Hua Zhao

Porous UHMWPE with different characteristics are prepared by hot press molding in Metallographic Sample Mounting. Friction and wear loss of porous UHMWPE samples are studied under different loads and lubricant on an improved tribological tester. The friction coefficient and wear loss of samples with porosity of 5.44% are lower than that of samples with porosity of 10.17%. Thickness of porous layer has little effect on the tribological properties of porous UHMWPE. Contact angle remarkable decreases with increasing porosity of UHMWPE samples. The change of wettability is the primary cause of the improving tribological properties of porous UHMWPE.


Sign in / Sign up

Export Citation Format

Share Document