Incorporation and optimization of RGO and GO in SSBR/NR composites expands their applicability

2021 ◽  
pp. 096739112110017
Author(s):  
Guangyi Lin ◽  
Hong Wang ◽  
Boquan Yu ◽  
Shouyi Liu ◽  
Zhenning Liang ◽  
...  

Natural rubber (NR) has poor mechanical properties, which limits its practical application. Filler blending is a simple method that improves the inherent properties of natural rubber and expand its applicability. Using the mechanical mixing process, the effects of graphene oxide (GO) and redox graphene (rGO) on the physical properties, electrical conductivity, thermal conductivity, and air permeability of styrene-butadiene rubber (SSBR)/NR composites were studied. The results show that rGO exhibits efficient filler properties in various aspects, for example, the optimal filling amount of rGO and GO was 1.5 phr. In addition, rGO filled SSBR/NR composites showed satisfactory filler dispersibility. Notably, the better dispersibility of rGO was because of fewer hydrophilic functional groups on the surface which were difficult to agglomerate. The increase of rGO and GO content increased the maximum torque (MH) and minimum torque (ML) of the composite material, and decreases tc90 and tc10. The Payne effect of GO/SSBR/NR composites is more obvious than that of rGO/SSBR/NR composites. In addition, we found that the content of rGO (GO) reached saturation at 2phr. Notably, rGO and GO improved the properties of rGO filled SSBR/NR composites such as the tensile strength of rGO/SSBR/NR composites to 23.9 MPa. This shows the potential application of SSBR/NR composites in wearable electronic devices.

2013 ◽  
Vol 594-595 ◽  
pp. 634-638 ◽  
Author(s):  
N.Z. Nik Yahya ◽  
N.Z. Noimam ◽  
Hanafi Ismail ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Santiagoo Ragunathan

Curing characteristics and swelling behavior of natural rubber/styrene butadiene rubber/recycled nitrile glove (NR/SBR/rNBRg) blends were investigated. Eleven composition ratio; 50/50/0, 50/40/10, 50/30/20, 50/20/30, 50/10/40, 50/0/50, 40/50/10, 30/50/20, 20/50/30, 10/50/40, and 0/50/50 of SMRL/SBR/rNBRg with the size of rNBRg ; 2.5 3.0 cm2 were prepared by using two roll mill at room temperature. Cure characteristics such as scorch time,t2, cure time,t90, minimum torque, ML, maximum torque, MH, and swelling behavior of SMRL/SBR/rNBRg ternary blends were examined. Results indicated that the scorch time and maximum torque of the NR/SBR/rNBRg blends decreased with increasing rNBRg content. The minimum torque of the blends increased as rNBRg content increased. The cure time of NR/SBR/rNBRg blends show a unique trend, which are depending on the domain rubber content. The increment in rNBRg content decreased the crosslink density of NR/SBR/rNBRg blends.


1998 ◽  
Vol 71 (5) ◽  
pp. 837-845 ◽  
Author(s):  
A. N. Gent ◽  
S. Kawahara

Abstract Crystallization of natural rubber (NR) and trans-1,4-polyisoprene (TPI) in blends with styrene—butadiene rubber (SBR) has been studied dilatometrically. For TPI, the melting temperature and Avrami index of crystallization kinetics were unchanged by blending with SBR. However, the rate of crystallization was decreased significantly when only 1 wt % of SBR was added, and much more so for amounts large enough to constitute the continuous phase. These reductions in rate are attributed to two effects: chemical changes in TPI during mechanical mixing, and restricted nucleation in small TPI particles. Similar effects were noted for NR blended with SBR. When solution-blended as a 30/70 mixture with SBR, crystallization of the NR fraction was about 9 times slower than for NR itself, and the rate was reduced still further when mixing was more thorough. However, when NR and SBR were mixed mechanically, the rate of crystallization of the NR fraction was not reduced much although the Avrami index and final degree of crystallinity were significantly lower. These effects suggest that the NR particles are strained during mechanical mixing and do not recover afterwards.


2015 ◽  
Vol 815 ◽  
pp. 54-58 ◽  
Author(s):  
N.Z. Nik Yahya ◽  
Nik Noriman Zulkepli ◽  
Hussin Kamarudin ◽  
Hanafi Ismail ◽  
Sam Sung Ting ◽  
...  

Effects of different particle sizes of recycled nitrile glove (rNBRg) on curing characteristics and physical properties of natural rubber/styrene butadiene rubber/recycled nitrile glove (NR/SBR/rNBRg) blends were studied. The particle sizes of rNBRg were differentiated by the method of producing. S1 was obtained by cutting the rNBRg (whole glove) into smaller sheet; S2 was obtained by passing rNBRg through 2 rolls mill for 10 times; S3 was obtained by passing rNBRg through 2 rolls mill for 10 times and then mechanically grinded. NR/SBR/rNBRg blends were prepared at 50/30/20 composition using two roll mill at room temperature, with different particle sizes, rNBRg (S1), rNBRg (S2) and rNBRg (S3). Scorch time, cure time, minimum torque, maximum torque, crosslink density and hardness of the blends were examined. Results indicated that scorch time, cure time and minimum torque decreased as the rNBRg particle size decreased, while maximum torque and crosslink density increased. The rigidity of NR/SBR/rNBRg blends increased when smaller rNBRg particles were used, which explained the increased in hardness and decreased in resilience of the blends.


1999 ◽  
Vol 72 (4) ◽  
pp. 721-730 ◽  
Author(s):  
G. R. Hamed ◽  
J. Zhao

Abstract Typical sulfur-cured vulcanizates of styrene-butadiene rubber (SBR) and natural rubber (NR) were prepared, and subjected to air-oven aging at 100 °C. Gum specimens exhibited an initial aging period in which stiffness was unchanged, while tensile strength and strain-to-break were significantly reduced. In contrast, black-filled vulcanizates stiffened during early aging. After intermediate aging times, NR specimens softened, while SBR stiffened. With prolonged aging, all compositions became hard and inextensible.


1999 ◽  
Vol 35 (9) ◽  
pp. 1687-1693 ◽  
Author(s):  
N.S. Saxena ◽  
P. Pradeep ◽  
G. Mathew ◽  
S. Thomas ◽  
M. Gustafsson ◽  
...  

2021 ◽  
Vol 401 ◽  
pp. 123302
Author(s):  
Qirong Yang ◽  
Shuangpeng Yu ◽  
Haowen Zhong ◽  
Ting Liu ◽  
Erren Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document