scholarly journals Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin

Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769979 ◽  
Author(s):  
Richard E Kast ◽  
Quentin A Hill ◽  
Didier Wion ◽  
Håkan Mellstedt ◽  
Daniele Focosi ◽  
...  

Increased ratio of circulating neutrophils to lymphocytes is a common finding in glioblastoma and other cancers. Data reviewed establish that any damage to brain tissue tends to cause an increase in G-CSF and/or GM-CSF (G(M)-CSF) synthesized by the brain. Glioblastoma cells themselves also synthesize G(M)-CSF. G(M)-CSF synthesized by brain due to damage by a growing tumor and by the tumor itself stimulates bone marrow to shift hematopoiesis toward granulocytic lineages away from lymphocytic lineages. This shift is immunosuppressive and generates the relative lymphopenia characteristic of glioblastoma. Any trauma to brain—be it blunt, sharp, ischemic, infectious, cytotoxic, tumor encroachment, or radiation—increases brain synthesis of G(M)-CSF. G(M)-CSF are growth and motility enhancing factors for glioblastomas. High levels of G(M)-CSF contribute to the characteristic neutrophilia and lymphopenia of glioblastoma. Hematopoietic bone marrow becomes entrained with, directed by, and contributes to glioblastoma pathology. The antibiotic dapsone, the lipid-lowering agent fenofibrate, and the antiviral drug ribavirin are Food and Drug Administration– and European Medicines Agency–approved medicines that have potential to lower synthesis or effects of G(M)-CSF and thus deprive a glioblastoma of some of the growth promoting contributions of bone marrow and G(M)-CSF.

1996 ◽  
Vol 1 (1) ◽  
pp. 33-36 ◽  
Author(s):  
Alicia D. Zalka ◽  
Anna Sarno Ryan ◽  
Sophie M. Worobec ◽  
Glynis A. Scott

Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine used to stimulate the production of leukocytes and monocytes in neutropenic patients. Cutaneous reactions to GM-CSF are relatively common. However, documentation of the histologic features of GM-CSF-induced dermatoses has only been reported in nine patients. We previously reported three patients with GM-CSF dermatoses, all of whom demonstrated enlarged macrophages in the dermis. Biopsies from two of the patients showed intracytoplasmic elastin fragments in dermal macrophages consistent with GM-CSF's documented ability to increase phagocytic activity of macrophages in vitro. Objective: The objective of the present report is to present an additional case of GM-CSF-induced dermatoses and to document the apparent ability of this cytokine to induce phagocytosis of elastin fragments by macrophages. Methods and Results: The patient received GM-CSF to stimulate bone marrow recovery after a bone marrow transplant. He developed a diffuse macular papular rash that on biopsy revealed enlarged dermal macrophages with prominent intracytoplasmic elastin fragments. Conclusions: Elastophagocytosis by activated macrophages is a common finding in GM-CSF-induced dermatoses and is a relatively specific clue to the diagnosis of this disorder.


2018 ◽  
Vol 315 (3) ◽  
pp. L382-L386 ◽  
Author(s):  
Daria Barwinska ◽  
Houssam Oueini ◽  
Christophe Poirier ◽  
Marjorie E. Albrecht ◽  
Natalia V. Bogatcheva ◽  
...  

We have shown that cigarette smoke (CS)-induced pulmonary emphysema-like manifestations are preceded by marked suppression of the number and function of bone marrow hematopoietic progenitor cells (HPCs). To investigate whether a limited availability of HPCs may contribute to CS-induced lung injury, we used a Food and Drug Administration-approved antagonist of the interactions of stromal cell-derived factor 1 (SDF-1) with its chemokine receptor CXCR4 to promote intermittent HPC mobilization and tested its ability to limit emphysema-like injury following chronic CS. We administered AMD3100 (5mg/kg) to mice during a chronic CS exposure protocol of up to 24 wk. AMD3100 treatment did not affect either lung SDF-1 levels, which were reduced by CS, or lung inflammatory cell counts. However, AMD3100 markedly improved CS-induced bone marrow HPC suppression and significantly ameliorated emphysema-like end points, such as alveolar airspace size, lung volumes, and lung static compliance. These results suggest that antagonism of SDF-1 binding to CXCR4 is associated with protection of both bone marrow and lungs during chronic CS exposure, thus encouraging future studies of potential therapeutic benefit of AMD3100 in emphysema.


2019 ◽  
Vol 15 (2) ◽  
pp. 121-129
Author(s):  
Zhi Rao ◽  
Bo-xia Li ◽  
Yong-Wen Jin ◽  
Wen-Kou ◽  
Yan-rong Ma ◽  
...  

Background: Imatinib (IM) is a chemotherapy medication metabolized by CYP3A4 to Ndesmethyl imatinib (NDI), which shows similar pharmacologic activity to the parent drug. Although methods for determination of IM and/or NDI have been developed extensively, only few observations have been addressed to simultaneously determine IM and NDI in biological tissues such as liver, kidney, heart, brain and bone marrow. Methods: A validated LC-MS/MS method was developed for the quantitative determination of imatinib (IM) and N-desmethyl imatinib (NDI) from rat plasma, bone marrow, brain, heart, liver and kidney. The plasma samples were prepared by protein precipitation, and then the separation of the analytes was achieved using an Agilent Zorbax Eclipse Plus C18 column (4.6 × 100 mm, 3.5 µm) with gradient elution running water (A) and methanol (B). Mass spectrometric detection was achieved by a triplequadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Results: This method was used to investigate the pharmacokinetics and the tissue distributions in rats following oral administration of 25 mg/kg of IM. The pharmacokinetic profiles suggested that IM and NDI are disappeared faster in rats than human, and the tissue distribution results showed that IM and NDI had good tissue penetration and distribution, except for the brain. This is the first report about the large penetrations of IM and NDI in rat bone marrow. Conclusion: The method demonstrated good sensitivity, accuracy, precision and recovery in assays of IM and NDI in rats. The described assay was successfully applied for the evaluation of pharmacokinetics and distribution in the brain, heart, liver, kidney and bone marrow of IM and NDI after a single oral administration of IM to rats.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
M Kobayashi ◽  
BH Van Leeuwen ◽  
S Elsbury ◽  
ME Martinson ◽  
IG Young ◽  
...  

Abstract Human bone marrow cells cultured for 21 days in the presence of recombinant human interleukin-3 (IL-3) produced up to 28 times more colony-forming cells (CFC) than could be obtained from cultures stimulated with granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage CSF (GM-CSF). IL-3-cultured cells retained a multipotent response to IL-3 in colony assays but were restricted to formation of granulocyte colonies in G-CSF and granulocyte or macrophage colonies in GM-CSF. Culture of bone marrow cells in IL-3 also led to accumulation of large numbers of eosinophils and basophils. These data contrast with the effects of G-CSF, GM-CSF, and IL-3 in seven-day cultures. Here both GM-CSF and IL-3 amplified total CFC that had similar multipotential colony-forming capability in either factor. G-CSF, on the other hand, depleted IL-3-responsive colony-forming cells dramatically, apparently by causing these cells to mature into granulocytes. The data suggest that a large proportion of IL-3- responsive cells in human bone marrow express receptors for G-CSF and can respond to this factor, the majority becoming neutrophils. Furthermore, the CFC maintained for 21 days in IL-3 may be a functionally distinct population from that produced after seven days culture of bone marrow cells in either IL-3 or GM-CSF.


2003 ◽  
Vol 21 (20) ◽  
pp. 3853-3858 ◽  
Author(s):  
Irene Y. Cheung ◽  
M. Serena Lo Piccolo ◽  
Brian H. Kushner ◽  
Nai-Kong V. Cheung

Purpose: A promising treatment strategy for stage 4 neuroblastoma patients is the repeated application of anti-GD2 immunotherapy after activating myeloid effectors with granulocyte-macrophage colony-stimulating factor (GM-CSF). To use early marrow response as a prognostic marker is particularly relevant for patients not likely to benefit from this therapy. Patients and Methods: Eighty-six stage 4 neuroblastoma patients older than 1 year at diagnosis were classified in four clinical groups on protocol entry: complete remission or very good partial remission (n = 33), primary refractory (n = 33), secondary refractory (n = 10), and progressive disease (n = 10). Bone marrow samples collected before and following treatment were assayed for GD2 synthase mRNA by real-time reverse transcriptase polymerase chain reaction. Response and survival analyses were performed on posttreatment samples before the third cycle at 1.8 months from protocol entry. Results: GD2 synthase mRNA was evident in pretreatment marrow samples of the four clinical groups (42%, 52%, 60%, and 80% of samples, respectively), with median transcript level of 10.0, 16.6, 26.5, and 87.2, respectively. This marker became negative following antibody plus GM-CSF in 77% of complete remission or very good partial remission, 45% of primary refractory, 25% of secondary refractory, and 0% of progressive disease group. Progression-free survival was statistically different between responder and nonresponder groups (P < .0001). Among patients with minimal residual disease, molecular responders had a significantly lower risk of disease progression at a median follow-up of 29.8 months (P = .0001). Conclusion: GD2 synthase mRNA is a sensitive response marker of neuroblastoma in the bone marrow. It is particularly useful for minimal residual disease evaluation and may potentially be useful as an early predictor of resistance to antibody plus GM-CSF immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document