Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control

2012 ◽  
Vol 23 (9) ◽  
pp. 1041-1048 ◽  
Author(s):  
Weihua Li ◽  
Xianzhou Zhang ◽  
Haiping Du

Driver fatigue is one of the leading factors contributing to road crashes. Environmental stress, such as unwanted seat vibration, is a key contributor to fatigue. This article presents the design and development of a magnetorheological elastomer isolator for a seat suspension system. By altering the magnetorheological elastomer isolator’s stiffness through a controllable magnetic field and selecting suitable control strategy, the system’s natural frequency can be changed to avoid resonance, which consequently reduce the vehicle’s vibration energy input to seat, and thus suppress the seat’s response. Experimental results show that the developed magnetorheological elastomer isolator is able to reduce vibration more when compared with the passive isolation system, indicating the significant potential of its application in vehicle seat vibration control.

2011 ◽  
Vol 464 ◽  
pp. 195-198
Author(s):  
Qi Zhi Yang ◽  
Guo Quan Huang ◽  
Chen Long ◽  
Xiao Bing Zhu

Vibration of vehicle system is a typical vibration of multi-degree freedom. The damping performance of multi-degree freedom seat suspension is important to ride comfort of vehicle occupants. Based on the multi-dimensional movement principle of parallel mechanism, it is built a new vehicle seat with 3-DOF suspension. It is Established a kinematics model and then analyzed the theory of the displacement of the parallel vehicle seat system. Finally, using ADAMS software to build the simulation models of seat suspension, it is showed that the seat vibration system has a good effort on vibration reduction.


2016 ◽  
Vol 23 (20) ◽  
pp. 3392-3413 ◽  
Author(s):  
Do Xuan Phu ◽  
Sang-Min Choi ◽  
Seung-Bok Choi

This paper presents a new hybrid controller which is a combination of three control schemes: fuzzy neural control, PI control and sliding mode control. The interval type 2 fuzzy model featuring updated rules via online is used in this study and in order to support the fuzzy model, a granular clustering method is applied to find groups of data related to the initial fuzzy rule. Then the output for fuzzy model is used for the PI-sliding mode controller. The combination of PI and sliding mode controls is carried out by H-infinity technique method which is rely on the modified Riccati-like equation. After developing the mathematical model, the proposed controller is applied to vibration control of a vehicle seat suspension featuring magneto-rheological (MR) damper. In order to demonstrate the effectiveness of the proposed controller, two different excitations of bump and random signals are adopted and corresponding vibration control performances are evaluated. It is demonstrated through both simulation and experiment that the proposed controller can provide much better than vibration control performance compared with the conventional controllers showing more robust stability.


2019 ◽  
Vol 9 (21) ◽  
pp. 4540 ◽  
Author(s):  
Phu ◽  
Choi

A new controller based on the modified Riccati-like Equation is developed in this paper. The interval type 2 fuzzy model is applied and embedded in the controller to ensure the robustness to parameter uncertainties and also to support calculation progress. The proposed input control includes equivalent control and robustness control. The equivalent control is found from the conventional analysis with the sliding surface, but this control is not sufficient to resolve the uncertainties and disturbances such as error approximation of the fuzzy model. Thus, a proportional-integral-derivative (PID) controller and matrices of the traditional model of Riccati equation are utilized to ensure the robustness. In the synthesis of this control part, the H infinity technique is adopted and the stability of the system is proved using Lyapunov stability. Subsequently, to validate the effectiveness of the proposed controller, it was applied to vibration control of a vehicle seat suspension with a magnetorheological (MR) damper subjected to stiffness variation due to the magnitude of the input current. In this problem, two types of road conditions, bump and random step wave, were adopted and control performance was evaluated in both simulations and experiments. Based on these evaluations, the proposed controller provides high control performances, effectively controlling the acceleration and displacement at the driver position.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Wenxing Li ◽  
Haiping Du ◽  
Zhiguang Feng ◽  
Donghong Ning ◽  
Weihua Li ◽  
...  

Abstract This paper proposes a singular system-based approach for active vibration control of vehicle seat suspensions, where the drivers' acceleration is augmented into the conventional seat suspension model together with seat suspension deflection and relative velocity as system states to make the suspension model as a singular system. In this novel seat suspension system, all the system states are easy to measure in real-time. A friction observer is applied to estimate the real system friction and an H∞ controller is designed to achieve the optimal ride comfort performance with consideration of the friction compensation, actuator saturation, and time delay issues. The cone complementarity linearization (CCL) algorithm is applied to solve the nonlinear constraints. The experimental results show that good ride comfort performance can be achieved by the proposed controller in both the time and frequency domain compared with the uncontrolled seat suspension.


2004 ◽  
Author(s):  
Yung-Peng Wang ◽  
Yung-Chi Wu

It is well known that the trend of current high-tech equipment and processes development is ultra-precision and high-speed. Thus, vibration becomes a significant issue for those high-tech equipment and processes. When the environmental vibration exceeds the requirements of the precision equipment, vibration control techniques should be employed to improve the accuracy and resolution of that equipment. There are two types of vibration control techniques. One is passive isolation system; the other is active isolation system. Passive isolation system can provide better performance for higher frequencies. Active isolation system is used to improve the isolation performance for lower frequencies. However, passive isolation system has bad performance around the natural frequency. In addition, it cannot eliminate the effects of onboard disturbances on the equipment. Therefore, active isolation system becomes the major technology in the applications of vibration control for precision equipment. In this paper, a modified hard-mounted isolation system is proposed to improve the performance of hard-mounted systems. In this system, a voice coil motor is placed in parallel with the passive element and used to eliminate the effects of onboard disturbances on the equipment. A piezoactuator is still utilized to isolate the environmental vibration from the equipment. Furthermore, an active control algorithm is developed to achieve the optimal performance of low vibration transmissibility and high stiffness. The results are verified by the numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document