Uncertainty in performance for linear and nonlinear energy harvesting strategies

2012 ◽  
Vol 23 (13) ◽  
pp. 1451-1460 ◽  
Author(s):  
Brian P Mann ◽  
David AW Barton ◽  
Benjamin AM Owens

Vibrational energy harvesters are often linear mass–spring–damper-type devices, which have their resonant frequency tuned to the dominant vibration frequency of their host environment. As such, they can be highly sensitive to uncertainties, which may arise from the imprecise characterization of the host environment or, alternatively, from manufacturing defects and tolerances. It has previously been claimed that the use of nonlinear energy harvesters may be one way to alleviate the problems of these uncertainties. This article presents a systematic uncertainty propagation study of a prototypical electromagnetic energy harvester. More specifically, the response of a linear harvester in the presence of parametric uncertainty is compared to the response of harvesters containing some common forms of nonlinearity, that is, hardening, softening, or bistability. Analytical solutions are used in combination with presumed levels of parametric uncertainty to quantify the resulting uncertainty in the power output. Consequently, these studies can determine the regions in the parameter space where a nonlinear strategy may outperform a more traditional linear approach.

2019 ◽  
Vol 3 (1) ◽  
pp. 160-165
Author(s):  
Hendry D. Chahyadi

The designs of automotive suspension system are aiming to avoid vibration generated by road condition interference to the driver. This final project is about a quarter car modeling with simulation modeling and analysis of Two-Mass modeling. Both existing and new modeling are being compared with additional spring in the sprung mass system. MATLAB program is developed to analyze using a state space model. The program developed here can be used for analyzing models of cars and vehicles with 2DOF. The quarter car modelling is basically a mass spring damping system with the car serving as the mass, the suspension coil as the spring, and the shock absorber as the damper. The existing modeling is well-known model for simulating vehicle suspension performance. The spring performs the role of supporting the static weight of the vehicle while the damper helps in dissipating the vibrational energy and limiting the input from the road that is transmitted to the vehicle. The performance of modified modelling by adding extra spring in the sprung mass system provides more comfort to the driver. Later on this project there will be comparison graphic which the output is resulting on the higher level of damping system efficiency that leads to the riding quality.


Author(s):  
Sumin Seong ◽  
Christopher Mullen ◽  
Soobum Lee

This paper presents reliability-based design optimization (RBDO) and experimental validation of the purely mechanical nonlinear vibration energy harvester we recently proposed. A bi-stable characteristic was embodied with a pre-stressed curved cantilever substrate on which piezoelectric patches were laminated. The curved cantilever can be simply manufactured by clamping multiple beams with different lengths or by connecting two ends of the cantilever using a coil spring. When vibrating, the inertia of the tip mass activates the curved cantilever to cause snap-through buckling and makes the nature of vibration switch between two equilibrium positions. The reliability-based design optimization study for maximization of power density and broadband energy harvesting performance is performed. The benefit of the proposed design in terms of excellent reliability, design compactness, and ease of implementation is discussed. The prototype is fabricated based on the optimal design result and energy harvesting performance between the linear and nonlinear energy harvesters is compared. The excellent broadband characteristic of the purely mechanical harvester will be validated.


2012 ◽  
Vol 47 ◽  
pp. 1041-1044 ◽  
Author(s):  
P. Janphuang ◽  
R. Lockhart ◽  
D. Briand ◽  
N.F. de Rooij

Author(s):  
Hanxiao Wu ◽  
Zhi Tao ◽  
Haiwang Li ◽  
Tiantong Xu ◽  
Wenbin Wang ◽  
...  

Abstract In this paper, we present a systematic theoretical and numerical study of the output performance of nonlinear energy harvesters. The general analytical expression of output power for systems with different combinations of nonlinear stiffness and nonlinear damping, as well as symmetrical and asymmetrical systems, have been derived based on harmonic balance method, observing compliance with numerical results. We theoretically prove that there is a limit power for all nonlinear systems which is determined exclusively by the vibrator mass, excitation acceleration, and mechanical damping. The results also indicate that for symmetrical stiffness systems, the asymmetrical damping components have no effect on the output performance. Additionally, we derived semi-analytical solutions of the matching loads and numerically investigated the influence of nonlinear coefficients on the output power with matched load. When the load matches device parameters and is much larger than the internal resistance, the equivalent time-average damping is equal to the mechanical damping. Although the matching load and output power vary with the nonlinear coefficients, the normalized power and matching resistance ratio follow a power function, named matching power line, which is independent of the structural parameters. With the improvement of the equivalent time-average short-circuit damping in the vibration range, the normalized power moves to the right end of the matching power line, and the output power approach to the limit power. These conclusions provide general characteristics of nonlinear energy harvesters, which can be used to guide the design and optimization of energy harvesters.


2019 ◽  
Vol 96 (2) ◽  
pp. 1283-1301 ◽  
Author(s):  
Mickaël Lallart ◽  
Shengxi Zhou ◽  
Linjuan Yan ◽  
Zhichun Yang ◽  
Yu Chen

2020 ◽  
Vol 139 ◽  
pp. 106642
Author(s):  
Ulrike Nabholz ◽  
Lukas Lamprecht ◽  
Jan E. Mehner ◽  
André Zimmermann ◽  
Peter Degenfeld-Schonburg

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1072
Author(s):  
Xi Zuo ◽  
Li Chen ◽  
Wenjun Pan ◽  
Xingchen Ma ◽  
Tongqing Yang ◽  
...  

Fluorinated polyethylene propylene (FEP) bipolar ferroelectret films with a specifically designed concentric tunnel structure were prepared by means of rigid-template based thermoplastic molding and contact polarization. The properties of the fabricated films, including the piezoelectric response, mechanical property, and thermal stability, were characterized, and two kinds of energy harvesters based on such ferroelectret films, working in 33- and 31-modes respectively, were investigated. The results show that the FEP films exhibit significant longitudinal and radial piezoelectric activities, as well as superior thermal stability. A quasi-static piezoelectric d33 coefficient of up to 5300 pC/N was achieved for the FEP films, and a radial piezoelectric sensitivity of 40,000 pC/N was obtained in a circular film sample with a diameter of 30 mm. Such films were thermally stable at 120 °C after a reduction of 35%. Two types of vibrational energy harvesters working in 33-mode and 31-mode were subsequently designed. The results show that a power output of up to 1 mW was achieved in an energy harvester working in 33-mode at a resonance frequency of 210 Hz, referring to a seismic mass of 33.4 g and an acceleration of 1 g (g is the gravity of the earth). For a device working in 31-mode, a power output of 15 μW was obtained at a relatively low resonance frequency of 26 Hz and a light seismic mass of 1.9 g. Therefore, such concentric tunnel FEP ferroelectric films provide flexible options for designing vibrational energy harvesters working either in 33-mode or 31-mode to adapt to application environments.


Sign in / Sign up

Export Citation Format

Share Document