Experimental investigation of vibration reduction using shape memory alloys

2012 ◽  
Vol 24 (2) ◽  
pp. 247-261 ◽  
Author(s):  
Ricardo AA Aguiar ◽  
Marcelo A Savi ◽  
Pedro MCL Pacheco

Smart materials have a growing technological importance due to their unique thermomechanical characteristics. Shape memory alloys belong to this class of materials being easy to manufacture, relatively lightweight, and able to produce high forces or displacements with low power consumption. These aspects could be exploited in different applications including vibration control. Nevertheless, literature presents only a few references concerning the experimental analysis of shape memory alloy dynamical systems. This contribution deals with the experimental analysis of shape memory alloy dynamical systems by considering an experimental apparatus consisted of low-friction cars free to move in a rail. A shaker that provides harmonic forcing excites the system. The vibration analysis reveals that shape memory alloy elements introduce complex behaviors to the system and that different thermomechanical loadings are of concern showing the main aspects of the shape memory alloy dynamical response. Special attention is dedicated to the analysis of vibration reduction that can be achieved by considering different approaches exploiting either temperature variations promoted by electric current changes or vibration absorber techniques. The results establish that adaptability due to temperature variations is defined by a competition between stiffness and hysteretic behavior changes.

2021 ◽  
Vol 21 (1) ◽  
pp. 15-25
Author(s):  
Rusul Saad Ahmed ◽  
Qasim Abaas Atiyah ◽  
Imad Abdlhussein Abdulsahib

Smart materials have a growing technological importance due to their unique thermomechanical characteristics. Shape memory alloys belong to this class of materials being easy to manufacture, relatively lightweight, and able to produce high forces or displacements with low power consumption. These aspects could be exploited in different applications including vibration control. A dynamic vibration absorber (DVA) can be used as an effective vibration control device. It is essentially a secondary mass, attached to an original system via a spring and damper. The natural frequency of the DVA is tuned such that it coincides with the frequency of unwanted vibration in the original system. This work aims to develop a dynamic vibration absorber with the help of shape memory alloy (SMA) springs in order to attenuate the vibration for a range of excitation frequencies. The experimental apparatus consisted of low-friction cars free to move in a rail. A shaker that provides harmonic forcing excites the system. Special attention is dedicated to the analysis of vibration reduction that can be achieved by considering different approaches exploiting temperature variations promoted either by electric current changes or by vibration absorber techniques. The results established that adaptability due to temperature variations is defined by modulus of stiffness


2018 ◽  
Vol 30 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Venkata Siva C Chillara ◽  
Leon M Headings ◽  
Ryohei Tsuruta ◽  
Eiji Itakura ◽  
Umesh Gandhi ◽  
...  

This work presents smart laminated composites that enable morphing vehicle structures. Morphing panels can be effective for drag reduction, for example, adaptive fender skirts. Mechanical prestress provides tailored curvature in composites without the drawbacks of thermally induced residual stress. When driven by smart materials such as shape memory alloys, mechanically-prestressed composites can serve as building blocks for morphing structures. An analytical energy-based model is presented to calculate the curved shape of a composite as a function of force applied by an embedded actuator. Shape transition is modeled by providing the actuation force as an input to a one-dimensional thermomechanical constitutive model of a shape memory alloy wire. A design procedure, based on the analytical model, is presented for morphing fender skirts comprising radially configured smart composite elements. A half-scale fender skirt for a compact passenger car is designed, fabricated, and tested. The demonstrator has a domed unactuated shape and morphs to a flat shape when actuated using shape memory alloys. Rapid actuation is demonstrated by coupling shape memory alloys with integrated quick-release latches; the latches reduce actuation time by 95%. The demonstrator is 62% lighter than an equivalent dome-shaped steel fender skirt.


2009 ◽  
Vol 6 (4) ◽  
pp. 219-227 ◽  
Author(s):  
T. Grund ◽  
C. Megnin ◽  
J. Barth ◽  
M. Kohl

Polymer based microvalves offer outstanding properties for biomedical and life science applications. They can be produced cost efficiently by batch fabrication methods. Further, by adapting the polymer material, custom-tailored properties of the valve are possible. For mechanically active microvalves, actuation with smart materials like shape memory alloys is highly attractive due to their high work output per volume and favorable scaling behavior. For the integration of such smart materials, fabrication process incompatibilities between the actuator material and the polymer target system need to be avoided. This can be achieved by novel transfer bonding technologies being optimized for batch fabrication. These technologies are demonstrated for polymer microvalves actuated by a shape memory alloy but they can also be applied to other functional materials and structures.


2018 ◽  
Vol 203 ◽  
pp. 06005
Author(s):  
Azmi Mohammad Hassan ◽  
Raizal Saifulnaz Muhammad Rashid ◽  
Nazirah Ahmad ◽  
Shahria Alam ◽  
Farzad Hejazi ◽  
...  

Smart structures are defined as structures that able to adapt and maintain structural characteristics in dealing with changes of external disturbance, environment and unexpected severe loadings. This ability will lead to improve structural safety, serviceability and structural life extension. Shape memory alloys is one of the smart materials which has potential to be integrated in structural system to provide functions such as sensing, actuation, self-adapting and healing of the structures. The unique characteristic of shape memory alloys material is the ability to ‘remember’ its original shape after deformation. Nickel Titanium superelastic shape memory alloy wire is popular and widely used in many engineering fields and owned fully recovery of maximum strain of 6%-13.5% which is among the best shape recovery limit in alloy materials. The austenite finish temperature plays important role in stress-strain behaviour of superelastic shape memory alloys where higher stress required to complete martensite transformation with the increase of austenite finish temperature. The similar behaviour also is observed in the case of higher strain rate. The behaviour of superelastic shape memory alloys need to be studied before implementing in the structural system, so the targeted improvement for the structural system can be achieved.


Author(s):  
Amine Riad ◽  
Amine Riad ◽  
Amine Riad ◽  
Mohamed Mansouri

The shape memory alloys belong to the smart materials thanks to their thermomechanical proprieties' reply to thermal or to mechanical loading. These materials can change shape, stiffness, displacement, natural frequency, and many mechanical characteristics in response to stress or to heat such as conduction, convection or radiation. However, heating by convection or conduction are the most useful and studied methods unlike radiation. Therefore, this paper aims to study the radiation effect on the shape memory alloy behavior


2011 ◽  
Vol 674 ◽  
pp. 171-175
Author(s):  
Katarzyna Bałdys ◽  
Grzegorz Dercz ◽  
Łukasz Madej

The ferromagnetic shape memory alloys (FSMA) are relatively the brand new smart materials group. The most interesting issue connected with FSMA is magnetic shape memory, which gives a possibility to achieve relatively high strain (over 8%) caused by magnetic field. In this paper the effect of annealing on the microstructure and martensitic transition on Ni-Mn-Co-In ferromagnetic shape memory alloy has been studied. The alloy was prepared by melting of 99,98% pure Ni, 99,98% pure Mn, 99,98% pure Co, 99,99% pure In. The chemical composition, its homogeneity and the alloy microstructure were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase composition was also studied by X-ray analysis. The transformation course and characteristic temperatures were determined by the use of differential scanning calorimetry (DSC) and magnetic balance techniques. The results show that Tc of the annealed sample was found to decrease with increasing the annealing temperature. The Ms and Af increases with increasing annealing temperatures and showed best results in 1173K. The studied alloy exhibits a martensitic transformation from a L21 austenite to a martensite phase with a 7-layer (14M) and 5-layer (10M) modulated structure. The lattice constants of the L21 (a0) structure determined by TEM and X-ray analysis in this alloy were a0=0,4866. The TEM observation exhibit that the studied alloy in initial state has bigger accumulations of 10M and 14M structures as opposed from the annealed state.


Author(s):  
Theresa M. Simon

AbstractWe analyze generic sequences for which the geometrically linear energy $$\begin{aligned} E_\eta (u,\chi )\,{:}{=} \,\eta ^{-\frac{2}{3}}\int _{B_{1}\left( 0\right) } \left| e(u)- \sum _{i=1}^3 \chi _ie_i\right| ^2 \, \mathrm {d}x+\eta ^\frac{1}{3} \sum _{i=1}^3 |D\chi _i|({B_{1}\left( 0\right) }) \end{aligned}$$ E η ( u , χ ) : = η - 2 3 ∫ B 1 0 e ( u ) - ∑ i = 1 3 χ i e i 2 d x + η 1 3 ∑ i = 1 3 | D χ i | ( B 1 0 ) remains bounded in the limit $$\eta \rightarrow 0$$ η → 0 . Here $$ e(u) \,{:}{=}\,1/2(Du + Du^T)$$ e ( u ) : = 1 / 2 ( D u + D u T ) is the (linearized) strain of the displacement u, the strains $$e_i$$ e i correspond to the martensite strains of a shape memory alloy undergoing cubic-to-tetragonal transformations and the partition into phases is given by $$\chi _i:{B_{1}\left( 0\right) } \rightarrow \{0,1\}$$ χ i : B 1 0 → { 0 , 1 } . In this regime it is known that in addition to simple laminates, branched structures are also possible, which if austenite was present would enable the alloy to form habit planes. In an ansatz-free manner we prove that the alignment of macroscopic interfaces between martensite twins is as predicted by well-known rank-one conditions. Our proof proceeds via the non-convex, non-discrete-valued differential inclusion $$\begin{aligned} e(u) \in \bigcup _{1\le i\ne j\le 3} {\text {conv}} \{e_i,e_j\}, \end{aligned}$$ e ( u ) ∈ ⋃ 1 ≤ i ≠ j ≤ 3 conv { e i , e j } , satisfied by the weak limits of bounded energy sequences and of which we classify all solutions. In particular, there exist no convex integration solutions of the inclusion with complicated geometric structures.


Author(s):  
Alexander Czechowicz ◽  
Sven Langbein

Shape memory alloys (SMA) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape through the means of thermal activation, they are suitable as actuators for mechatronical systems. Despite of the advantages shape memory alloy actuators provide, these elements are only seldom integrated by engineers into mechatronical systems. Reasons are the complex characteristics, especially at different boundary conditions and the missing simulation- and design tools. Also the lack of knowledge and empirical data are a reason why development projects with shape memory actuators often lead to failures. This paper deals with the dynamic properties of SMA-actuators (Shape Memory Alloy) — characterized by their rate of heating and cooling procedures — that today can only be described insufficiently for different boundary conditions. Based on an analysis of energy fluxes into and out of the actuator, a numerical model of flat-wire used in a bow-like structure, implemented in MATLAB/SIMULINK, is presented. Different actuation parameters, depending on the actuator-geometry and temperature are considered in the simulation in real time. Additionally this publication sums up the needed empirical data (e.g. fatigue behavior) in order to validate the numerical two dimensional model and presents empirical data on SMA flat wire material.


Author(s):  
Alexander Czechowicz ◽  
Peter Dültgen ◽  
Sven Langbein

Shape memory alloys (SMA) are smart materials, which have two technical usable effects: While pseudoplastic SMA have the ability to change into a previously imprinted actual shape through the means of thermal activation, pseudoelastic SMA show a reversible mechanical elongation up to 8% at constant temperature. The transformation between the two possible material phases (austenite and martensite) shows a hysteretic behavior. As a result of these properties, SMA can be used as elastic elements with intrinsic damping function. Additionally the electrical resistance changes remarkably during the material deformation. These effects are presented in the publication in combination with potential for applications in different branches at varying boundary conditions. The focus of the presented research is concentrated on the application of elastic elements with adaptive damping function. As a proof for the potential considerations, an application example sums up this presentation.


Author(s):  
Arun Veeramani ◽  
John Crews ◽  
Gregory D. Buckner

This paper describes a novel approach to modeling hysteresis using a Hysteretic Recurrent Neural Network (HRNN). The HRNN utilizes weighted recurrent neurons, each composed of conjoined sigmoid activation functions to capture the directional dependencies typical of hysteretic smart materials (piezoelectrics, ferromagnetic, shape memory alloys, etc.) Network weights are included on the output layer to facilitate training and provide statistical model information such as phase fraction probabilities. This paper demonstrates HRNN-based modeling of two- and three-phase transformations in hysteretic materials (shape memory alloys) with experimental validation. A two-phase network is constructed to model the displacement characteristics of a shape memory alloy (SMA) wire under constant stress. To capture the more general thermo-mechanical behavior of SMAs, a three-phase HRNN model (which accounts for detwinned Martensite, twinned Martensite, and Austensite phases) is developed and experimentally validated. The HRNN modeling approach described in this paper readily lends itself to other hysteretic materials and may be used for developing real-time control algorithms.


Sign in / Sign up

Export Citation Format

Share Document