Harmonic active vibration control using piezoelectric self-sensing actuation with complete digital compensation

2017 ◽  
Vol 29 (7) ◽  
pp. 1510-1519 ◽  
Author(s):  
Anik Pelletier ◽  
Philippe Micheau ◽  
Alain Berry

In this article, the implementation of a self-sensing piezoelectric actuator with complete digital compensation is presented. The proposed compensation not only minimizes the signal due to the electrical behavior of the self-sensing actuator but also takes into account the fact that piezoelectric actuator causes a local strain—not related to the global vibration of the plate—in a vibrating plate to which it is coupled. Therefore, the corrected measured current is related to the global vibration of the plate and may be used in an active control scheme. The electro-mechanical model on which is based this self-sensing actuator is first explained. Then, the electronic and digital processing implementation is presented, as well as the active time-harmonic control scheme used. Finally, results of experimental validation are presented, and the attenuation performance of the self-sensing actuator is compared to the performances of a co-localized accelerometer/lead zirconate titanate pair. It is shown that the corrected self-sensing actuator current gives results better than what is obtained with a co-localized sensor/actuator pair and that this technique may be used to control more than one frequency simultaneously.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3447 ◽  
Author(s):  
Yizhe Wang ◽  
Zhiwei Xu

A single piezoelectric patch can be used as both a sensor and an actuator by means of the self-sensing piezoelectric actuator, and the function of self-sensing shows several advantages in many application fields. However, some problems exist in practical application. First, a capacitance bridge circuit is set up to realize the function of self-sensing, but the precise matching of the capacitance of the bridge circuit is hard to obtain due to the standardization of electric components and variations of environmental conditions. Second, a local strain is induced by the self-sensing actuator that is not related to the global vibration of the structure, which would affect the performance of applications, especially in active vibration control. The above problems can be tackled by the feedforward compensation method that is proposed in this paper. A configured piezoelectric self-sensing circuit is improved by a feedforward compensation tunnel, and a gain of compensation voltage is adjusted by the time domain and frequency domain’s steepest descent algorithms to alleviate the capacitance mismatching and local strain problems. The effectiveness of the method is verified in the experiment of the active vibration control in a wind tunnel, and the control performance of compensated self-sensing actuation is compared to the performance with capacitance mismatching and local strain. It is found that the above problems have negative effects on the stability and performance of the vibration control and can be significantly eliminated by the proposed method.


2001 ◽  
Author(s):  
Seung-Keon Kwak ◽  
Gregory Washington

Abstract In this research, we examine aircraft components based on their interaction with the system. This essentially asks the question is there enough energy available (without losses) in a candidate system to meet the energy required. The goal of this research is to highlight this design process with the design and construction of an active aircraft wing. A new twisting and bending coupled piezoelectric actuator based on the spatial aperture shading technique is introduced to build deformable wings. The shaped electrode twisting actuator consists of two layers of PZT-5H (lead zirconate titanate) and one middle layer of steel shim. The directionally shaped electrode technique is applied to achieve the both twisting and bending motions of the actuator. The comparison of an analytical model, a numerical analysis, and actual experimental results for the actuator are given.


Robotica ◽  
2008 ◽  
Vol 26 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Xuping Zhang ◽  
James K. Mills ◽  
William L. Cleghorn

SUMMARYThis paper addresses the dynamic simulation and control of structural vibrations of a 3-PRR parallel manipulator with three flexible intermediate links, to which are bonded lead zirconate titanate (PZT) actuators and sensors. Flexible intermediate links are modelled as Euler–Bernoulli beams with pinned-pinned boundary conditions. A PZT actuator controller is designed based on strain rate feedback (SRF) control. Control moments from PZT actuators are transformed to force vectors in modal space and are incorporated in the dynamic model of the manipulator. The dynamic equations are developed based on the assumed mode method for the flexible parallel manipulator with multiple PZT actuator and sensor patches. Numerical simulation is performed and the results indicate that the proposed active vibration control strategy is effective. Spectral analyses of structural vibrations further illustrate that deformations from structural vibration of flexible links are suppressed to a significant extent when the proposed vibration control strategy is employed, while the deflections caused by inertial and coupling forces are not reduced.


1998 ◽  
Vol 7 (1) ◽  
pp. 31-42 ◽  
Author(s):  
J Garcia-Bonito ◽  
M J Brennan ◽  
S J Elliott ◽  
A David ◽  
R J Pinnington

Sign in / Sign up

Export Citation Format

Share Document