Vibration control of elastodynamic response of a 3-PRR flexible parallel manipulator using PZT transducers

Robotica ◽  
2008 ◽  
Vol 26 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Xuping Zhang ◽  
James K. Mills ◽  
William L. Cleghorn

SUMMARYThis paper addresses the dynamic simulation and control of structural vibrations of a 3-PRR parallel manipulator with three flexible intermediate links, to which are bonded lead zirconate titanate (PZT) actuators and sensors. Flexible intermediate links are modelled as Euler–Bernoulli beams with pinned-pinned boundary conditions. A PZT actuator controller is designed based on strain rate feedback (SRF) control. Control moments from PZT actuators are transformed to force vectors in modal space and are incorporated in the dynamic model of the manipulator. The dynamic equations are developed based on the assumed mode method for the flexible parallel manipulator with multiple PZT actuator and sensor patches. Numerical simulation is performed and the results indicate that the proposed active vibration control strategy is effective. Spectral analyses of structural vibrations further illustrate that deformations from structural vibration of flexible links are suppressed to a significant extent when the proposed vibration control strategy is employed, while the deflections caused by inertial and coupling forces are not reduced.

Author(s):  
Xuping Zhang ◽  
James K. Mills ◽  
William L. Cleghorn

This paper addresses the control of structural vibrations of a 3-PRR parallel manipulator with three flexible intermediate links, bonded with multiple lead zirconate titanate (PZT) actuators and sensors. Flexible intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions. A PZT actuator controller is designed based on strain rate feed control (SRF). Control moments from PZT actuators are transformed to force vectors in modal space, and are incorporated in the dynamic model of the manipulator. The dynamic equations are developed based on the assumed mode method for the flexible parallel manipulator with multiple PZT actuator and sensor patches. Numerical simulation is performed and the results indicate that the proposed active vibration control strategy is effective. Frequency spectra analyses of structural vibrations further illustrate that deformations from structural vibration of flexible links are suppressed to a significant extent when the proposed vibration control strategy is employed, while the deflections caused by inertial and coupling forces are not reduced.


Author(s):  
Xuping Zhang ◽  
James K. Mills ◽  
William L. Cleghorn

This paper presents an experimental study on active vibration control of a moving 3-PRR parallel manipulator with three flexible intermediate links, with bonded lead zirconate titanate (PZT) actuators and sensors. Experimental modal tests are conducted to identify structural vibration mode shapes and natural frequencies used. These modal tests provide guidance to design the filter and determine the location of PZT transducers. A PZT actuator controller is developed based on strain rate feedback (SRF) control. A state-space model is formulated with the control input voltage applied to PZT actuators, and output generated from PZT sensors. Then, the design of an optimal active vibration controller is presented based on SRF for the parallel manipulator with flexible links with multiple bonded PZT transducers. Active vibration control experiments are conducted to demonstrate that the proposed active vibration control strategy is effective. Power spectral density (PSD) plots of vibrations illustrate that the structural vibration of flexible links is reduced effectively when the proposed vibration control strategy is employed.


2021 ◽  
Vol 11 (20) ◽  
pp. 9404
Author(s):  
Yi Wang ◽  
Thomas Kletschkowski

A smart exciter coupled to cabin panels can be used as a new type of loudspeaker for emergency announcements in the aircraft cabin. The same device can also be used as a semi-active vibration control system which is effective in reducing the amplitude of structural vibration. The objective of this paper is to investigate the potential of vibration reduction using a smart exciter in combination with an optimized resistive-inductive shunt circuit, which serves as an absorbing network. First, the vibration reduction effect has been analyzed numerically using a simulation framework realized with COMSOL and MATLAB/Simulink. In a second step, the reduction effect of the smart exciter together with a resistive-inductive shunt circuit, which is produced by the Center of Applied Aeronautical Research (Zentrum für Angewandte Luftfahrtforschung GmbH, Hamburg, Germany), has been investigated experimentally. The results presented here prove that the smart exciter together with a resistive-inductive shunt can be highly effective in reducing structural vibrations.


Author(s):  
Fumio Doi ◽  
Kazuto Seto ◽  
Mingzhang Ren ◽  
Yuzi Gatate

Abstract In this paper we present an experimental investigation of active vibration control of a scaled bridge tower model under artificial wind excitation. The control scheme is designed on the basis of a reduced order model of the flexible structures using the LQ control theory, with a collocation of four laser displacement sensors and two hybrid electro-magnetic actuators. The experimental results in the wind tunnel show that both the bending and the twisting vibrations covering the first five modes of the structure are controlled well.


Author(s):  
Andrea Staino ◽  
Biswajit Basu

The paper discusses some of the recent developments in vibration control strategies for wind turbines, and in this context proposes a new dual control strategy based on the combination and modification of two recently proposed control schemes. Emerging trends in the vibration control of both onshore and offshore wind turbines are presented. Passive, active and semi-active structural vibration control algorithms have been reviewed. Of the existing controllers, two control schemes, active pitch control and active tendon control, have been discussed in detail. The proposed new control scheme is a merger of active tendon control with passive pitch control, and is designed using a Pareto-optimal problem formulation. This combination of controllers is the cornerstone of a dual strategy with the feature of decoupling vibration control from optimal power control as one of its main advantages, in addition to reducing the burden on the pitch demand. This dual control strategy will bring in major benefits to the design of modern wind turbines and is expected to play a significant role in the advancement of offshore wind turbine technologies.


2019 ◽  
Vol 23 (5) ◽  
pp. 1010-1023 ◽  
Author(s):  
Naveet Kaur ◽  
Dasari Mahesh ◽  
Sreenitya Singamsetty

Energy harvesting is an emerging technology holding promise of sustainability amid the alarming rate at which the human community is depleting the natural resources to cater its needs. There are several ways of harvesting energy in a renewable fashion such as through solar, wind, hydro-electric, geothermal, and artificial photosynthesis. This study focuses on energy harvesting from wind vibrations and ambient structural vibrations (such as from rail and road bridges) through piezo transducers using the direct piezoelectric effect. First, the potential of the piezoelectric energy harvesting from ambient wind vibrations has been investigated and presented here. Lead zirconate titanate patches have been attached at the fixed end of aluminum rectangular and trapezoidal cantilevers, which have been exposed to varying wind velocity in a lab-size wind tunnel. The effect of perforations and twisting (distortion) on the power generated by the patches under varying wind velocity has also been studied. It has been observed that the power is comparatively higher in rectangular-shaped cantilever than the trapezoidal one. Perforations and shape distortion showed promising result in terms of higher yield. The laboratory experiments have also been extended to the real-life field condition to measure the actual power generated by the lead zirconate titanate patches under the ambient wind vibrations. Next, energy harvesting from the ambient structural vibrations has been done both experimentally and numerically. Four different prototypes have been considered. The power has been measured across the lead zirconate titanate patches individually and in parallel combination. A maximum power output for Prototype 1 to Prototype 4 has been found to be 4.3428, 11.844, 25.97, and 43.12 µW, respectively. Numerical study has also been carried out in ANSYS 14.5 to perform the parametric study to examine the effect of addition of mass at the free end of cantilever. In a nutshell, this article provides a comprehensive study on the effect of various factors on the amount of energy generated by piezoelectric patches under wind and structural vibrations. The energy generated is sufficient for driving low-power-consuming electronics that can further be used for other applications like wireless structural health monitoring, and so on.


Sign in / Sign up

Export Citation Format

Share Document