Development of a dual magnetostrictive material rods–based electro-hydrostatic actuator

2019 ◽  
Vol 30 (13) ◽  
pp. 1871-1881 ◽  
Author(s):  
Zhenyu Wang ◽  
Yuchuan Zhu ◽  
Renqiang Li ◽  
Cheng Liu ◽  
Niyomwungeri Bruno

Recently, the use of smart material–based electro-hydrostatic actuators is increasingly becoming more attractive to overcome the inherent disadvantages of conventional actuation systems and to offer new opportunities for performance improvement. A new type of a dual magnetostrictive material rods–based electro-hydrostatic actuator is presented in the current study. An active rotary rectification valve is utilized to convert small, high-frequency vibration displacements of the magnetostrictive material rods into continuous, smooth and bidirectional motion of a hydraulic cylinder by fluid rectification. Simulation and experiments were performed to confirm the feasibility of the new concept. The experimental results indicate that the dual magnetostrictive material rods–based electro-hydrostatic actuator exhibits a maximum flow rate that is approximately twice that of a single magnetostrictive material rod–based electro-hydrostatic actuator, and that the operating frequency increases from 110 to 150 Hz.

Author(s):  
Yuchuan Zhu ◽  
Chang Liu ◽  
Yunze Song ◽  
Long Chen ◽  
Yulei Jiang ◽  
...  

In this paper, an electro-hydrostatic actuator driven by dual axial-mounted magnetostrictive material rods-based pumps (MMPs) with a new type of active rectification valve is designed in the current study. Based on flow distribution of the active rectification valve and driving energy provided by two MMPs, the actuator can output continuous and bidirectional displacement. By establishing a mathematical model of the actuating system, using simulation techniques, the change rule of hydraulic cylinder’s motion state caused by different driving signals are studied and analyzed. Test equipment platform is constructed in the laboratory to test the output characteristics and confirm the feasibility of the new concept. The experimental results indicate that the maximum flow rate can reach approximately 2.7 L·min−1, while the operating frequency is 180 Hz.


2012 ◽  
Vol 220-223 ◽  
pp. 539-542
Author(s):  
Hai Feng Xie ◽  
Zhi Gang Yang ◽  
Meng Jie

To improve the driving ability of gas and light fluid which is sensitive to the temperature change, based on the system resonant principle a novel kind of piezoelectric resonant diaphragm air pump has been proposed. Experimental results indicate that the maximum flow rate is 1650ml/min when the sinusoidal AC driving voltage is 200v, the vibrating spring thickness is 0.6mm, the adjusting spring thickness is 1.4mm, and it was 0.5 as the radius ratio of the rigidity transfer vibration piston and the diaphragm.


2021 ◽  
pp. 039156032110033
Author(s):  
Atef Fathi ◽  
Omar Mohamed ◽  
Osama Mahmoud ◽  
Gamal A Alsagheer ◽  
Ahmed M Reyad ◽  
...  

Background: Substitution urethroplasty using buccal mucosal grafts can be performed by several approaches including ventral onlay graft, dorsal onlay graft, or ventral urethrotomy with dorsal inlay graft. Our study aims to evaluate the surgical outcome of dorsolateral buccal mucosal graft for long segment anterior urethral stricture >6 cm in patients with Lichen sclerosus (LS). Methods: A retrospective study included patients who underwent repair for long segment anterior urethral stricture >6 cm due to LS between January 2013 and April 2019. All patients were followed-up at 3, 6, 9, and 12 months postoperatively and then yearly by clinical symptoms, uroflowmetry, and calculation of post-void residual urine volume. Retrograde urethrogram was requested for patients with voiding symptoms or decreased maximum flow rate. Stricture recurrence that required subsequent urethrotomy or urethroplasty was considered failure. The success rate and surgical complications were collected and analyzed. Results: Thirty patients were identified. The median age (range) was 39 (25–61) years and a median (range) stricture length was 8 (6–14) cm. Most of postoperative complications were of minor degree. The success rate at median follow-up of 15 (12–24) months was 86.5%. The median maximum flow rate increased significantly from 6 (2–11) ml/s preoperatively to 18 (range: 6–23) ml/s at the 6th month ( p value < 0.001). Conclusion: Dorsolateral buccal mucosal grafts urethroplasty for long anterior urethral stricture caused by LS has a high success rate and low risk of complications including stricture recurrence.


1965 ◽  
Vol 87 (1) ◽  
pp. 134-141 ◽  
Author(s):  
F. J. Moody

A theoretical model is developed for predicting the maximum flow rate of a single component, two-phase mixture. It is based upon annular flow, uniform linear velocities of each phase, and equilibrium between liquid and vapor. Flow rate is maximized with respect to local slip ratio and static pressure for known stagnation conditions. Graphs are presented giving maximum steam/water flow rates for: local static pressures between 25 and 3,000 psia, with local qualities from 0.01 to 1.00; local stagnation pressures and enthalpies which cover the range of saturation states.


Author(s):  
Mohammad J. Izadi ◽  
Alireza Falahat

In this investigation an attempt is made to find the best hub to tip ratio, the maximum number of blades, and the best angle of attack of an axial fan with flat blades at a fixed rotational speed for a maximum mass flow rate in a steady and turbulent conditions. In this study the blade angles are varied from 30 to 70 degrees, the hub to tip ratio is varied from 0.2 to 0.4 and the number of blades are varied from 2 to 6 at a fixed hub rotational speed. The results show that, the maximum flow rate is achieved at a blade angle of attack of about 45 degrees for when the number of blades is set equal to 4 at most rotational velocities. The numerical results show that as the hub to tip ratio is decreased, the mass flow rate is increased. For a hub to tip ratio of 0.2, and an angle of attack around 45 degrees with 4 blades, a maximum mass flow rate is achieved.


Author(s):  
Yi Hou ◽  
Lipeng He ◽  
Zheng Zhang ◽  
Baojun Yu ◽  
Hong Jiang ◽  
...  

This paper focuses on a new structure in the valveless piezoelectric pump, which has a combination structure of the conical flow channel and two fishtail-shaped bluffbodies in the chamber of the pump. The fishtail-shaped bluffbody is inspired by the shape of the swimming fish to diminish the backflow and optimize the performance of the pump. The performance is studied by changing the shape and size of the inlet and outlet, the bluff bodies’ height and the space between two bluff bodies. The results show that the 3 mm × 3 mm square inlet, 3 mm diameter round outlet, 3 mm height of bluffbodies, 6.8 mm pitch of bluffbodies has a best performance in all 10 prototypes, which implements a maximum flow rate of 87.5 ml/min at 170 V 40 Hz with a noise of 42.6 dB. This study makes a preliminary investigation and theoretical explanation for the subsequent optimization of this structure, improved the performance of the valveless piezoelectric pump, broaden the thinking of the design for the bluffbody for better performance of the valveless piezoelectric pump.


1999 ◽  
Author(s):  
Ling-Sheng Jang ◽  
Christopher J. Morris ◽  
Nigel R. Sharma ◽  
Ron L. Bardell ◽  
Fred K. Forster

Abstract Micropumps designed for the flow-rate range of 100–1000μl/min have been developed by a number of research groups. However, little data is available regarding the ability of various designs to directly transport liquids containing particles such as cells, microspheres utilized for bead chemistry, or contaminants. In this study the ability of pumps with no-moving-parts valves (NMPV) to transport particles was investigated. The results showed that a NMPV micropump was able to directly pump suspensions of polystyrene microspheres from 3.1 to 20.3μm in diameter. The pump functioned without clogging at microsphere number densities as high as 9000 particles/μl of suspension, which corresponded to over 90,000 particles per second passing through the pump at a flow rate of 600μl/min. Performance with polystyrene microspheres was the same as pure water up to the point of cavitation. Microspheres manufactured with negative surface charge cavitated less readily that other microspheres studied that were manufactured without surface charge. However, cavitation did not appear to be a function of microsphere size, total surface area or number density. Thus pumping polystyrene microspheres was found to be more affected by surface effects than by size, surface area or number density within the range of parameters considered. In the case of charged microspheres, the maximum flow rate was reduced by 30% compared to pure water whereas for uncharged microspheres the maximum flow rate was reduced by approximately 80%.


Sign in / Sign up

Export Citation Format

Share Document