Anisotropic magnetorheological elastomers with carbonyl iron particles in natural rubber and acrylonitrile butadiene rubber: A comparative study

Author(s):  
Md. Najib Alam ◽  
Vineet Kumar ◽  
Sang-Ryeoul Ryu ◽  
Jungwook Choi ◽  
Dong-Joo Lee

This work examines magneto-rheological elastomers (MREs) based on isotropic and anisotropic distribution of carbonyl iron particles (CIP) in natural rubber (NR) and acrylonitrile butadiene rubber (NBR). Measurements of the compressive mechanical properties were done to determine the isotropic and anisotropic properties of the MREs. Scanning electron microscopy (SEM) and optical microscopy were employed to study the CIP filler mixing behavior in the rubber matrix and orientation of particles in an anisotropic state. CIP-NBR composites show higher ultimate compressive stress in both isotropic and anisotropic states than NR-based composites. NBR-based composites show positive increases in both the elastic modulus and compressive stress at higher deformation when changing from isotropic to anisotropic, whereas NR-based composites show a positive increase in the elastic modulus and a decrease in the compressive stress. Elastic modulus measurements of anisotropic composites under a magnetic field suggest that NBR composites have much better field-dependent magnetic properties than NR composites. Anti-stress-relaxation measurements indicate that NBR composites have better magnetic effect than NR composites. The better performance of NBR-based anisotropic composites in field-dependent and independent behaviors might be due to better filler distribution, a greater number of chain-like filler structures, and less aggregation of the chain-like filler strands. The MREs based on NBR could be more useful than NR for wide range of magneto rheological applications.

2016 ◽  
Vol 25 (9) ◽  
pp. 095025 ◽  
Author(s):  
Salihah Tan Shilan ◽  
Saiful Amri Mazlan ◽  
Yasushi Ido ◽  
Abdollah Hajalilou ◽  
Balachandran Jeyadevan ◽  
...  

2019 ◽  
Vol 7 (4.14) ◽  
pp. 529
Author(s):  
Ku Zarina Ku Ahmad ◽  
MHA Khairi ◽  
SA Mazlan

Magnetorheological elastomers (MREs) are categorized as part of the smart materials class whose rheological properties can be altered under the influence of a magnetic field. MREs are fabricated by embedding soft magnetic particles such as carbonyl iron particles (CIPs) in a rubber matrix such as silicone and natural rubber. In this project, epoxidized natural rubber (ENR-50) is used as a base material with carbonyl iron particles. Sucrose Acetate Isobutyrate (SAIB) ester is added to the formulation to improve the viscosity and enhance the MRE properties. The isotropic MRE is fabricated using two roll mill and a compression mould. Various tests comprise mechanical, morphology, thermal and magnetic tests were conducted for MRE characterization purpose. The results showed that the addition of SAIB on the MRE had reduced 53% of viscosity in the rubber matrix compared to non-ester based MRE. Dispersion of magnetic particles is improved by the addition of ester as observed through Field Emission Scanning Electron Microscope (FESEM). Additionally, the thermal stability was also improved. Tensile strength of MRE consisting SAIB ester achieved maximum strength of 12.3 MPa and an elongation of 620% compared to non-ester based MRE.  


Author(s):  
Md Najib Alam ◽  
Vineet Kumar ◽  
Sang-Ryeoul Ryu ◽  
Tae Jo Koa ◽  
Dong-Joo Lee ◽  
...  

ABSTRACT This article presents the development of a new kind of magnetorheological elastomer blend made with natural rubber, acrylonitrile–butadiene rubber (NR-NBR), and electrolytic iron particles through solution mixing. The compressive stress and elastic modulus of the composites in the isotropic and anisotropic states of the filler were studied. A unique study of the filler distribution and filler orientation mechanism was proposed from the compressive properties and scanning electron microscopy. A strong improvement in the elastic modulus of the NR–NBR blend from isotropic to anisotropic change was achieved as compared with NR and NBR in single-rubber composites. The filler content in the anisotropic magnetorheological elastomers was optimized by measuring the field-dependent elastic modulus in the presence of an externally applied magnetic field. The blend rubber composites showed better sensitivity in the presence of a magnetic field than the NR and NBR composites did. The improvement might be due to the better filler orientation and strong adhesion of filler particles by the NR phase in the blend matrix. The new elastomer blends may have applications in active dampers, vibrational absorption, and automotive bushings.


2019 ◽  
Vol 20 (13) ◽  
pp. 3311 ◽  
Author(s):  
Siti Aishah Binti Abdul Aziz ◽  
Saiful Amri Mazlan ◽  
Nur Azmah Nordin ◽  
Nor Azlin Nazira Abd Rahman ◽  
U Ubaidillah ◽  
...  

High temperatures and humidity could alter the field-dependent rheological properties of MR materials. These environmental phenomena may accelerate the deterioration processes that will affect the long-term rheological reliability of MR materials such as MR elastomer (MRE). This study therefore attempts to investigate the field-dependent rheological characteristics of MRE with corroded carbonyl iron particles (CIPs). The corroded CIPs were treated with hydrochloric acid (HCl) as a way of providing realistic environments in gauging the CIPs reaction towards the ambient conditions. The corroded CIPs along with silicone rubber as a matrix material were used in the fabrication of the MRE samples. To observe the effect of HCl treatment on the CIPs, the morphological observations of MREs with non-corroded and corroded CIPs were investigated via field emission scanning electron microscopy (FESEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometer (XRD). In addition, the magnetic properties were examined through the vibrating sample magnetometer (VSM), while the field-dependent rheological characteristics such as the storage modulus of MRE with the corroded CIPs were also tested and compared with the non-corroded CIPs. The results showed that the corroded CIPs possessed hydrangea-like structures. In the meantime, it was identified that a sudden reduction of up to 114% of the field-dependent MR effect of MRE with the corroded CIPs was observed as a result of the weakened interfacial bonding between the CIPs and the silicon in the outer layers of the CIPs structure.


Sign in / Sign up

Export Citation Format

Share Document