scholarly journals Material Characterization of Magnetorheological Elastomers with Corroded Carbonyl Iron Particles: Morphological Images and Field-dependent Viscoelastic Properties

2019 ◽  
Vol 20 (13) ◽  
pp. 3311 ◽  
Author(s):  
Siti Aishah Binti Abdul Aziz ◽  
Saiful Amri Mazlan ◽  
Nur Azmah Nordin ◽  
Nor Azlin Nazira Abd Rahman ◽  
U Ubaidillah ◽  
...  

High temperatures and humidity could alter the field-dependent rheological properties of MR materials. These environmental phenomena may accelerate the deterioration processes that will affect the long-term rheological reliability of MR materials such as MR elastomer (MRE). This study therefore attempts to investigate the field-dependent rheological characteristics of MRE with corroded carbonyl iron particles (CIPs). The corroded CIPs were treated with hydrochloric acid (HCl) as a way of providing realistic environments in gauging the CIPs reaction towards the ambient conditions. The corroded CIPs along with silicone rubber as a matrix material were used in the fabrication of the MRE samples. To observe the effect of HCl treatment on the CIPs, the morphological observations of MREs with non-corroded and corroded CIPs were investigated via field emission scanning electron microscopy (FESEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometer (XRD). In addition, the magnetic properties were examined through the vibrating sample magnetometer (VSM), while the field-dependent rheological characteristics such as the storage modulus of MRE with the corroded CIPs were also tested and compared with the non-corroded CIPs. The results showed that the corroded CIPs possessed hydrangea-like structures. In the meantime, it was identified that a sudden reduction of up to 114% of the field-dependent MR effect of MRE with the corroded CIPs was observed as a result of the weakened interfacial bonding between the CIPs and the silicon in the outer layers of the CIPs structure.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nurul Liyana Burhannuddin ◽  
Nur Azmah Nordin ◽  
Saiful Amri Mazlan ◽  
Siti Aishah Abdul Aziz ◽  
Noriyuki Kuwano ◽  
...  

AbstractCarbonyl iron particles (CIPs) is one of the key components in magnetic rubber, known as magnetorheological elastomer (MRE). Apart from the influence of their sizes and concentrations, the role of the particle’ shape is pronounced worthy of the attention for the MRE performance. However, the usage of CIPs in MRE during long-term applications may lead to corrosion effects on the embedded CIPs, which significantly affects the performance of devices or systems utilizing MRE. Hence, the distinctions between the two types of MRE embedded in different shapes of spherical and plate-like CIPs, at both conditions of non-corroded and corroded CIPs were investigated in terms of the field-dependent rheological properties of MRE. The plate-like shape was produced from spherical CIPs through a milling process using a rotary ball mill. Then, both shapes of CIPs individually subjected to an accelerated corrosion test in diluted hydrochloric (HCl) at different concentrations, particularly at 0.5, 1.0, and 1.5 vol.% for 30 min of immersion time. Eight samples of CIPs, including non-corroded for both CIPs shapes, were characterized in terms of a morphological study by field emission scanning electron microscope (FESEM) and magnetic properties via vibrating sample magnetometer (VSM). The field-dependent rheological properties of MREs were analyzed the change in the dynamic modulus behavior of MREs via rheometer. From the application perspective, this finding may be useful for the system to be considered that provide an idea to prolong the performance MRE by utilizing the different shapes of CIPs even when the material is fading.


2020 ◽  
Vol 21 (5) ◽  
pp. 1793 ◽  
Author(s):  
Norhiwani Mohd Hapipi ◽  
Saiful Amri Mazlan ◽  
U. Ubaidillah ◽  
Siti Aishah Abdul Aziz ◽  
Muntaz Hana Ahmad Khairi ◽  
...  

Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long-term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples.


2018 ◽  
Vol 772 ◽  
pp. 61-65
Author(s):  
Muntaz Hana Ahmad Khairi ◽  
Saiful Amri Mazlan ◽  
Ubaidillah ◽  
Siti Aishah Abdul Aziz ◽  
Norhiwani Mohd Hapipi

This study introduces a sucrose acetate isobutyrate (SAIB) as an additive of magnetorheological elastomers (MREs) to be added in silicone rubber matrix and carbonyl iron particles (CIPs) as their filler. The CIPs were fixed at 60 wt% and two types of MREs sample were fabricated which are isotropic and anisotropic. Rheological properties related to shear storage modulus were measured using a rheometer (MCR 302, Anton Paar). The experimental results demonstrated that the magnetorheological (MR) effect of anisotropic MREs-based Silicone/SAIB was 126 % as compared to isotropic MREs-based Silicone/SAIB, 64%. The fabricated MREs samples were frequency and strain dependent. The relative MR effect for both samples showed decreasing trend with the increment of strain amplitude and excitation frequency.


2014 ◽  
Vol 778-780 ◽  
pp. 151-154 ◽  
Author(s):  
Shi Yang Ji ◽  
Kazutoshi Kojima ◽  
Yuuki Ishida ◽  
Hirotaka Yamaguchi ◽  
Shingo Saito ◽  
...  

The defect evolution on 90 μm-thick heavily Al-doped 4H-SiC epilayers with Al doping level higher than 1020 cm-3 was studied by tracing back to initial growth stage to monitor major dislocations and their propagations in each growth stage. Results from X-ray topography and KOH etching demonstrate that all existing dislocations on the surface of 90 μm-thick epilayer can be identified as the defects originating from substrate. In other words, there seems no new dislocation generated after a long-term growth. Nevertheless, a high density of misfit dislocation was found appearing near the substrate/epilayer interface for epilayer with Al doping level of 3.5×1020 cm-3, while misfit dislocation cannot be seen on epilayer with Al doping level of 1.5×1020 cm-3.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bianca Palma Santana ◽  
Fernanda Nedel ◽  
Evandro Piva ◽  
Rodrigo Varella de Carvalho ◽  
Flávio Fernando Demarco ◽  
...  

We aimed to develop an alginate hydrogel (AH) modified with nano-/microfibers of titanium dioxide (nfTD) and hydroxyapatite (nfHY) and evaluated its biological and chemical properties. Nano-/microfibers of nfTD and nfHY were combined with AH, and its chemical properties were evaluated by FTIR spectroscopy, X-ray diffraction, energy dispersive X-Ray analysis, and the cytocompatibility by the WST-1 assay. The results demonstrate that the association of nfTD and nfHY nano-/microfibers to AH did not modified the chemical characteristics of the scaffold and that the association was not cytotoxic. In the first 3 h of culture with NIH/3T3 cells nfHY AH scaffolds showed a slight increase in cell viability when compared to AH alone or associated with nfTD. However, an increase in cell viability was observed in 24 h when nfTD was associated with AH scaffold. In conclusion our study demonstrates that the combination of nfHY and nfTD nano-/microfibers in AH scaffold maintains the chemical characteristics of alginate and that this association is cytocompatible. Additionally the combination of nfHY with AH favored cell viability in a short term, and the addition of nfTD increased cell viability in a long term.


2016 ◽  
Vol 25 (9) ◽  
pp. 095025 ◽  
Author(s):  
Salihah Tan Shilan ◽  
Saiful Amri Mazlan ◽  
Yasushi Ido ◽  
Abdollah Hajalilou ◽  
Balachandran Jeyadevan ◽  
...  

2017 ◽  
Vol 29 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Miao Yu ◽  
Hongping Luo ◽  
Jie Fu ◽  
Pingan Yang

In this article, iron nanowire is synthesized by reducing Fe2+ ion with excessive sodium borohydride in deionized aqueous solution. A kind of dimorphic magnetorheological gel is prepared by partial substitution of carbonyl iron particles with Fe nanowires. Several experimental devices based on the dimorphic magnetorheological gel were fabricated, and the magneto-resistance characteristics under a magnetic field of those devices are systematically tested to research the influence of the Fe nanowire on the conductivity of magnetorheological gel. The experimental results indicated that by adding a certain amount of Fe nanowire, the conductivity of the dimorphic magnetorheological gel can be greatly improved. Moreover, it can be seen that the conductivity of sample 4 (with 6 wt.% Fe nanowire) is increased by about 100 times than sample 1 (without Fe nanowire). The mechanism of Fe nanowire enhances the conductivity of the dimorphic magnetorheological gel, which is investigated by microstructure analysis.


2006 ◽  
Vol 2006 ◽  
pp. 1-6 ◽  
Author(s):  
Florian Voigts ◽  
Tanja Damjanovic ◽  
Günter Borchardt ◽  
Christos Argirusis ◽  
Wolfgang Maus-Friedrichs

We present a simple and highly reproductive method for the preparation of thin films consisting of strontium titanate nanoparticles. The films are produced by spin coating of a sol on silicon targets and subsequent annealing under ambient conditions. Analysis by atomic force microscopy shows particles with typical sizes between 10 nm and 50 nm. X-ray photoelectron spectroscopy displays a stoichiometry of the films as anticipated from preliminary experiments with strontium titanate single crystals. Metastable-induced electron spectroscopy and ultraviolet photoelectron spectroscopy are used as tools to give evidence to the similar electronic properties of nanoparticle film and single crystal. These results support the prospect for an application of the nanoparticle films as high temperature oxygen sensor with superior properties.


2016 ◽  
Vol 25 (9) ◽  
pp. 095043 ◽  
Author(s):  
N Mohamad ◽  
S A Mazlan ◽  
Ubaidillah ◽  
Seung-Bok Choi ◽  
M F M Nordin

Sign in / Sign up

Export Citation Format

Share Document