A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

2016 ◽  
Vol 25 (9) ◽  
pp. 095025 ◽  
Author(s):  
Salihah Tan Shilan ◽  
Saiful Amri Mazlan ◽  
Yasushi Ido ◽  
Abdollah Hajalilou ◽  
Balachandran Jeyadevan ◽  
...  
2016 ◽  
Vol 25 (9) ◽  
pp. 095043 ◽  
Author(s):  
N Mohamad ◽  
S A Mazlan ◽  
Ubaidillah ◽  
Seung-Bok Choi ◽  
M F M Nordin

Author(s):  
Md. Najib Alam ◽  
Vineet Kumar ◽  
Sang-Ryeoul Ryu ◽  
Jungwook Choi ◽  
Dong-Joo Lee

This work examines magneto-rheological elastomers (MREs) based on isotropic and anisotropic distribution of carbonyl iron particles (CIP) in natural rubber (NR) and acrylonitrile butadiene rubber (NBR). Measurements of the compressive mechanical properties were done to determine the isotropic and anisotropic properties of the MREs. Scanning electron microscopy (SEM) and optical microscopy were employed to study the CIP filler mixing behavior in the rubber matrix and orientation of particles in an anisotropic state. CIP-NBR composites show higher ultimate compressive stress in both isotropic and anisotropic states than NR-based composites. NBR-based composites show positive increases in both the elastic modulus and compressive stress at higher deformation when changing from isotropic to anisotropic, whereas NR-based composites show a positive increase in the elastic modulus and a decrease in the compressive stress. Elastic modulus measurements of anisotropic composites under a magnetic field suggest that NBR composites have much better field-dependent magnetic properties than NR composites. Anti-stress-relaxation measurements indicate that NBR composites have better magnetic effect than NR composites. The better performance of NBR-based anisotropic composites in field-dependent and independent behaviors might be due to better filler distribution, a greater number of chain-like filler structures, and less aggregation of the chain-like filler strands. The MREs based on NBR could be more useful than NR for wide range of magneto rheological applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nurul Liyana Burhannuddin ◽  
Nur Azmah Nordin ◽  
Saiful Amri Mazlan ◽  
Siti Aishah Abdul Aziz ◽  
Noriyuki Kuwano ◽  
...  

AbstractCarbonyl iron particles (CIPs) is one of the key components in magnetic rubber, known as magnetorheological elastomer (MRE). Apart from the influence of their sizes and concentrations, the role of the particle’ shape is pronounced worthy of the attention for the MRE performance. However, the usage of CIPs in MRE during long-term applications may lead to corrosion effects on the embedded CIPs, which significantly affects the performance of devices or systems utilizing MRE. Hence, the distinctions between the two types of MRE embedded in different shapes of spherical and plate-like CIPs, at both conditions of non-corroded and corroded CIPs were investigated in terms of the field-dependent rheological properties of MRE. The plate-like shape was produced from spherical CIPs through a milling process using a rotary ball mill. Then, both shapes of CIPs individually subjected to an accelerated corrosion test in diluted hydrochloric (HCl) at different concentrations, particularly at 0.5, 1.0, and 1.5 vol.% for 30 min of immersion time. Eight samples of CIPs, including non-corroded for both CIPs shapes, were characterized in terms of a morphological study by field emission scanning electron microscope (FESEM) and magnetic properties via vibrating sample magnetometer (VSM). The field-dependent rheological properties of MREs were analyzed the change in the dynamic modulus behavior of MREs via rheometer. From the application perspective, this finding may be useful for the system to be considered that provide an idea to prolong the performance MRE by utilizing the different shapes of CIPs even when the material is fading.


2019 ◽  
Vol 20 (13) ◽  
pp. 3311 ◽  
Author(s):  
Siti Aishah Binti Abdul Aziz ◽  
Saiful Amri Mazlan ◽  
Nur Azmah Nordin ◽  
Nor Azlin Nazira Abd Rahman ◽  
U Ubaidillah ◽  
...  

High temperatures and humidity could alter the field-dependent rheological properties of MR materials. These environmental phenomena may accelerate the deterioration processes that will affect the long-term rheological reliability of MR materials such as MR elastomer (MRE). This study therefore attempts to investigate the field-dependent rheological characteristics of MRE with corroded carbonyl iron particles (CIPs). The corroded CIPs were treated with hydrochloric acid (HCl) as a way of providing realistic environments in gauging the CIPs reaction towards the ambient conditions. The corroded CIPs along with silicone rubber as a matrix material were used in the fabrication of the MRE samples. To observe the effect of HCl treatment on the CIPs, the morphological observations of MREs with non-corroded and corroded CIPs were investigated via field emission scanning electron microscopy (FESEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometer (XRD). In addition, the magnetic properties were examined through the vibrating sample magnetometer (VSM), while the field-dependent rheological characteristics such as the storage modulus of MRE with the corroded CIPs were also tested and compared with the non-corroded CIPs. The results showed that the corroded CIPs possessed hydrangea-like structures. In the meantime, it was identified that a sudden reduction of up to 114% of the field-dependent MR effect of MRE with the corroded CIPs was observed as a result of the weakened interfacial bonding between the CIPs and the silicon in the outer layers of the CIPs structure.


2018 ◽  
Vol 772 ◽  
pp. 61-65
Author(s):  
Muntaz Hana Ahmad Khairi ◽  
Saiful Amri Mazlan ◽  
Ubaidillah ◽  
Siti Aishah Abdul Aziz ◽  
Norhiwani Mohd Hapipi

This study introduces a sucrose acetate isobutyrate (SAIB) as an additive of magnetorheological elastomers (MREs) to be added in silicone rubber matrix and carbonyl iron particles (CIPs) as their filler. The CIPs were fixed at 60 wt% and two types of MREs sample were fabricated which are isotropic and anisotropic. Rheological properties related to shear storage modulus were measured using a rheometer (MCR 302, Anton Paar). The experimental results demonstrated that the magnetorheological (MR) effect of anisotropic MREs-based Silicone/SAIB was 126 % as compared to isotropic MREs-based Silicone/SAIB, 64%. The fabricated MREs samples were frequency and strain dependent. The relative MR effect for both samples showed decreasing trend with the increment of strain amplitude and excitation frequency.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1121-1127 ◽  
Author(s):  
A. SHIBAYAMA ◽  
T. OTOMO ◽  
Y. AKAGAMI ◽  
K. SHIMADA ◽  
T. FUJITA

In this study, a magneto-rheological fluid dispersed by silica-coated iron was developed and its properties such as fluid viscosity (shear stress or shear rate) and abrasion were investigated. The metallic iron coated by silica dispersed in magneto-rheological fluid was prepared by H 2 reducing of precipitated magnetite ( Fe 3 O 4). Then, the magneto-rheological fluid (MR fluid) for the seal was prepared with silica-coated iron or carbonyl iron (HQ type; diameter of 1.6-1.9 10-6m) and two solvent oils i.e. silicon oil (SH200cv, 10000cSt) and CVT oil (T-CVTF, automobile transmission oil). It was observed that the MR fluid viscosity of CVT oil with HQ particles is lower in every fluid condition. Furthermore, the surface roughness of polyvinyl plate after abrasion test for MR fluid with silica coated iron and CVT oil as solvent was higher compared to the other types of MR fluids. The results indicated that carbonyl iron (spherical particles) and silica-coated iron particles dispersed in silicon oil are feasible to be used where the low abrasion in mechanics is required.


2012 ◽  
Vol 452-453 ◽  
pp. 623-627
Author(s):  
Cheng Bin Du ◽  
Guo Jun Yu ◽  
Zhi Wei Gong

The influence of carbonyl iron particles sizes on the properties of magneto-rheological fluids (MRFs) were studied. Different-sized carbonyl iron magnetic particles were prepared by ball milling with different milling times. On this basis, different particle MRF were prepared The off-state viscosity and the shear stress of the above MRFs were characterised and studied by an advanced rotational rheometer system. The test results show that the off-state viscosity and the shear stress of single-particle MRFs were enhanced with increasing average carbonyl iron particle size at a constant magnetic field. The shear stresses of MRFs containing two or three different particle sizes were significantly improved compared with the MRFs containing only a single particle size. At a reasonable level of medium and small size carbonyl iron particle spread throughout the structure of the multiple-particle MRFs, the defects in the chain structure were remedied when a chain reaction occurred, and the mechanical properties of MRFs were enhanced. Meanwhile, increased mass fractions of the small size carbonyl iron particle resulted in a reduction in overall average particle size of MRFs, and the mechanical properties of MRFs were also reduced. The mechanical properties of multiple-particle MRFs were observed to be strongly dependent on the size and mass fraction of the medium and small carbonyl iron particles.


2017 ◽  
Vol 416 ◽  
pp. 772-780 ◽  
Author(s):  
Pingan Yang ◽  
Miao Yu ◽  
Hongping Luo ◽  
Jie Fu ◽  
Hang Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document