Multi-objective optimization design for a magnetorheological damper

Author(s):  
Min Jiang ◽  
Xiaoting Rui ◽  
Fufeng Yang ◽  
Wei Zhu ◽  
Yanni Zhang

As one of the most important components in the semi-active damping system, the performance of MR damper directly determines the damping capacity of the damping system. In order to make the damping system has excellent damping effect, it is necessary to optimize the working performance of the MR damper. Therefore, Non-Dominated Sorting Genetic Algorithm version II (NSGA-II) was applied to optimize the structure of MR dampers in this paper. Firstly, the structural scheme of MR damper was proposed. Secondly, the design principle of MR damper was described, and the magnetic circuit material and MR fluid were selected. Thirdly, taking the maximum dynamic range and the minimum number of turns of electromagnetic coil as the optimization objective, the structure of MR damper was optimized by NSGA-II. The structural parameters of MR damper were determined in the Pareto optimal solution set based on the principle of minimum mass. Finally, through the magnetic simulation and the performance testing of the MR damper, it was verified that the MR damper has reasonable magnetic circuit and excellent performance. And the design results meet the requirements. The proposed optimization method can provide a theoretical basis for the optimal design of related damping devices.

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhizhen Dong ◽  
Zhimin Feng ◽  
Yuehua Chen ◽  
Kefan Yu ◽  
Gang Zhang

The consistency of magnetic flux density of damping gap (CMDG) represents the balancing magnetic flux density in each damping gap of magnetorheological (MR) dampers. It can make influences on the performances of MR dampers and the accuracy of relevant objective functions. In order to improve the mechanical performances of the MR damper with a two-stage coil, the function for calculating CMDG needs to be found. By establishing an equivalent magnetic circuit model of the MR damper, the CMDG function is derived. Then, the multiobjective optimization function and the working flow of optimal design are presented by combining the parallel-plate model of the MR damper with the function posed before. Taking the damping force, the dynamic range, the response time, and the CMDG as the optimization objective, and the external geometric dimensions of the SG-MRD60 damper as the bound variable, this paper optimizes the internal geometric dimensions of MR damper by using a NSGA-III algorithm on the PlatEMO platform. The results show that the obtained scheme in Pareto-optimal solutions has existed with better performance than that of SG-MRD60 scheme. According to the results of the finite element analysis, the multiobjective optimization design including the CMDG function can improve the uniformity of magnetic flux density of the MR damper in damping gap, which meets the requirements of manufacture and application.


Author(s):  
Jiajia Zheng ◽  
Yancheng Li ◽  
Jiong Wang

This paper presents the design and multi-physics optimization of a novel multi-coil magnetorheological (MR) damper with a variable resistance gap (VRG-MMD). Enabling four electromagnetic coils (EMs) with individual exciting currents, a simplified magnetic equivalent circuit was presented and the magnetic flux generated by each voltage source passing through each active gap was calculated as vector operations. To design the optimal geometry of the VRG-MMD, the multi-physics optimization problem including electromagnetics and fluid dynamics has been formulated as a multi-objective function with weighting ratios among total damping force, dynamic range, and inductive time constant. Based on the selected design variables (DVs), six cases with different weighting ratios were optimized using Bound Optimization BY Quadratic Approximation (BOBYQA) technique. Finally, the vibration performance of the optimal VRG-MMD subjected to sinusoidal and triangle displacement excitations was compared to that of the typical multi-coil MR damper.


2015 ◽  
pp. 787-817
Author(s):  
Saeid Pourzeynali ◽  
Shide Salimi

The main objective of this chapter is to find the optimal values of the parameters of the base isolation systems and that of the semi-active viscous dampers using genetic algorithms (GAs) and fuzzy logic in order to simultaneously minimize the buildings' selected responses such as displacement of the top story, base shear, and so on. In this study, performance of base isolation systems, and semi-active viscous dampers are studied separately as different vibration control strategies. In order to simultaneously minimize the objective functions, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solution. To study the performance of semi-active viscous dampers, the torsional effects exist in the building due to irregularities, and unsymmetrical placement of the dampers is taken into account through 3D modeling of the building.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Zekeriya Parlak ◽  
Tahsin Engin ◽  
İsmail Şahin

Magnetorheological (MR) dampers have attracted the interest of suspension designers and researchers because of their variable damping feature, mechanical simplicity, robustness, low power consumption and fast response. This study deals with the optimal configuration of an MR damper using the Taguchi experimental design approach. The optimal solutions of the MR damper are evaluated for the maximum dynamic range and the maximum damper force separately. The MR dampers are constrained in a cylindrical container defined by radius and height. The optimal damper configurations obtained from this study are fabricated and tested for verification. The verification tests show that the dampers provide the specified damper force and dynamic range.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sachin Negi ◽  
Ujjwal Sagar ◽  
Vijay Kumar Nautiyal ◽  
Neeraj Sharma

Purpose This paper aims to design and analyze a controlled magnetorheological damper-based ankle-foot prosthesis prototype. Design/methodology/approach The ankle-foot prostheses prototype is proposed using the lightweight three dimensional (3 D)-printed parts, MR damper and digital servomotor. Initially, the computer-aided design (CAD) model of the prosthetic foot, leaf spring, retention spring and the various connecting parts required to connect the pylon and damper actuator assemblies are designed using CAD software. Later, the fused deposition modeling 3 D printer-based technique prints a prosthetic foot and other connecting parts using Acrylonitrile Butadiene Styrene filament. The prototype consists of two control parts: the first part controls the MR actuator that absorbs the impacts during walking. The second part is the control of the electric actuator intended to generate the dorsiflexion and plantar flexion movements. Finally, the prototype is tested on a transtibial amputee under the supervision of a prosthetist. Findings The ANalysis SYStems software-based analysis has shown that the prosthetic foot has a factor of safety values between 4.7 and 8.7 for heel strike, mid-swing and toe-off; hence, it is safe from mechanical failure. The designed MR damper-based ankle-foot prosthesis prototype is tested on an amputee for a level-ground walk; he felt comfortable compared to his passive prosthesis. Originality/value The design of an MR damper-based prosthesis prototype offers a better dynamic range for locomotion than passive prostheses. It reduces the injuries and provides relief to the transtibial amputees.


2011 ◽  
Vol 328-330 ◽  
pp. 1135-1138 ◽  
Author(s):  
Lin Yang ◽  
Si Zhong Chen ◽  
Bin Zhang ◽  
Zhan Zong Feng

A rotary magnetorheological (MR) damper for a semi-active suspension was developed, laboratory tested. The working principle and features of the rotary MR damper was outlined and its theoretical model was developed. Full optimization of the magnetic design was accomplished with the help of magnetic finite element software ANSYS in the limited space. The parameters of the MR damper’s theoretical model were identified by a series of harmonic loading tests. It is demonstrated that the damping capacity of this MR damper is a function of strain amplitude and field strength, and it is feasible to use for the life application in terms of force characteristics.


Author(s):  
Zhixun Yang ◽  
Jun Yan ◽  
Qingzhen Lu ◽  
Jinlong Chen ◽  
Shanghua Wu ◽  
...  

The flexible cryogenic hose has been a favored alternative for offshore liquefied natural gas (LNG) exploitation recently, of which helical corrugated steel pipe is the crucial component with C shaped corrugation. Parametric finite-element models of LNG cryogenic helical corrugated pipe are presented based on 3D shell element in this paper. Taking account of nonlinearity such as cryogenic material and large geometric structural deformation, mechanical behavior characteristics results are obtained under axial tensional, bending and inner pressure loads. Meanwhile, the design parameters are determined for the shape optimization of structures of the flexible cryogenic hose through sectional dimension analysis, and sensitivity analysis is performed with changing geometric parameters. A multi-objective optimization with the object of minimizing stiffness and strength stress is formulated based on operation condition. Full factorial experiment and radial basis function (RBF) neural network are applied to establish the approximated model for the analysis of the structure. The Pareto optimal solution set and value range of parameters are obtained through NSGA-II GA algorithm under manufacturing and stiffness constraints. It provides a feasible optimal approach for the structural design of LNG cryogenic corrugated hose.


Author(s):  
Saeid Pourzeynali ◽  
Shide Salimi

The main objective of this chapter is to find the optimal values of the parameters of the base isolation systems and that of the semi-active viscous dampers using genetic algorithms (GAs) and fuzzy logic in order to simultaneously minimize the buildings’ selected responses such as displacement of the top story, base shear, and so on. In this study, performance of base isolation systems, and semi-active viscous dampers are studied separately as different vibration control strategies. In order to simultaneously minimize the objective functions, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solution. To study the performance of semi-active viscous dampers, the torsional effects exist in the building due to irregularities, and unsymmetrical placement of the dampers is taken into account through 3D modeling of the building.


2018 ◽  
Vol 153 ◽  
pp. 06002 ◽  
Author(s):  
Kubík Michal ◽  
Macháček Ondřej ◽  
Strecker Zbyněk ◽  
Roupec Jakub ◽  
Novák Petr ◽  
...  

The present paper deals with the transient magnetic model of the magnetorheological (MR) damper and its experimental verification. The response time of MR damper affects the quality of semi-active control of this damper. The lower the response time, the higher the system efficiency. The most important part of the response time of the MR damper is the response time of magnetic field of the MR damper which can be determined by transient magnetic model. The transient magnetic model was created by the software Ansys Electromagnetics 17.1 as 2D axisymmetric and verified by measurement of magnetic field in the gap of MR damper piston. The maximum difference between the model and the experiment was 28 %. The response time depends on the electric current in the coil of MR damper. The transient magnetic model was used for determination of influence of MR fluid type, material of cover and material of magnetic circuit on the response time of magnetic field of MR damper. The type of MR fluid has a significant influence on the response time. The lower the mass concentration of ferromagnetic particles, the lower the response time of magnetic field. A material selection of magnetic circuit is always a trade-off between the response time and the maximum magnetic flux density (dynamic force range) in the gap of the MR damper. According to the verified transient magnetic model, it is possible to find a suitable material of magnetic circuit for specific application (response time).


2014 ◽  
Vol 665 ◽  
pp. 601-606
Author(s):  
Xiao Chuan Liu ◽  
Shi Xing Zhu ◽  
Yong Gang Yang

The structure of a shock absorber based on magnetorheological (MR) damper with a metering pin is proposed, and structure of the magnetic circuit of MR damper is optimized. By drop tests, the damping characteristics of the shock absorber and damping effect are tested. The experimental results show that the shock absorber has the characteristic of a wide damping force adjustment range and lower energy dissipation. The maximum vertical load and shock absorber piston displacement can be changed at same drop height by changing the current. It has also been proved that shock absorber based on MR damper is better than conventional oleo-pneumatic shock absorber on adjustment of damping force.


Sign in / Sign up

Export Citation Format

Share Document