One-dimensional Localization Solutions for Time-dependent Damage

2011 ◽  
Vol 20 (8) ◽  
pp. 1178-1197
Author(s):  
D. Caillerie ◽  
C. Dascalu

This article presents analytical solutions for a class of one-dimensional time-dependent elasto-damage problems. The considered damage evolution law may be seen as a one-dimensional version of the Kachanov–Rabotnov creep damage model with classical loading–unloading conditions. We construct analytical solutions for the quasistatic one-dimensional problem. The evolution consists of a first regime, in which damage and strain grow uniformly, followed by a regime in which localization occurs. In the second regime, the uniqueness of the solution is lost and the deformation of the body is represented by a sequence of arbitrary alternate loading/unloading regions. Complex evolutions with progressive enlargement of the unloading regions in a finite number of steps are also constructed. We study analytically and numerically the features of the obtained bifurcated solutions. It is shown that, at every instant of time, a lower limit exists for the size of the localization zone. This lower limit is actually realized by the solution with successive unloadings constructed in this article. These features help us to understand the behavior of numerical solutions for time-dependent damage in the quasistatic approximation.

Author(s):  
Weitao Yang ◽  
Jin Xu

Most analytical and semi-analytical models for pumping-induced land subsidence invoke the simplifying assumptions regarding characteristics of geomaterials, as well as the pattern of drawdown response to pumping. This paper presents an analytical solution for one-dimensional consolidation of the multilayered soil due to groundwater drawdown, in which viscoelastic property and time-dependent drawdown are taken into account. The presented solution is developed by using the boundary transformation techniques. The validity of the proposed solution is verified by comparing with a degenerated case for a single layer, as well as with the numerical solutions and experimental results for a two-layer system. The difference between the average consolidation degree Up defined by hydraulic head and that Us defined by total settlement is discussed. The detailed parametric studies are conducted to reveal the effects of viscoelastic properties and drawdown patterns on the consolidation process. It is revealed that while the effect of different drawdown response patterns is significant during the early-intermediate stages of consolidation, the viscoelastic properties may have a more dominant influence on long-term consolidation behavior, depending on the values of the material parameters, which are reflected in both the deformation process of soil layers and the dissipation of excess pore-water pressure.


2017 ◽  
Vol 65 (2) ◽  
pp. 192-204 ◽  
Author(s):  
Pintu Das ◽  
Sultana Begam ◽  
Mritunjay Kumar Singh

Abstract In this study, analytical models for predicting groundwater contamination in isotropic and homogeneous porous formations are derived. The impact of dispersion and diffusion coefficients is included in the solution of the advection-dispersion equation (ADE), subjected to transient (time-dependent) boundary conditions at the origin. A retardation factor and zero-order production terms are included in the ADE. Analytical solutions are obtained using the Laplace Integral Transform Technique (LITT) and the concept of linear isotherm. For illustration, analytical solutions for linearly space- and time-dependent hydrodynamic dispersion coefficients along with molecular diffusion coefficients are presented. Analytical solutions are explored for the Peclet number. Numerical solutions are obtained by explicit finite difference methods and are compared with analytical solutions. Numerical results are analysed for different types of geological porous formations i.e., aquifer and aquitard. The accuracy of results is evaluated by the root mean square error (RMSE).


2001 ◽  
Vol 12 (07) ◽  
pp. 1093-1108 ◽  
Author(s):  
D. O. ODERO ◽  
J. L. PEACHER ◽  
D. H. MADISON

The time-dependent and time-independent Schrödinger equations have been numerically solved for several quantum mechanical problems with known analytical solutions using the basis-spline collocation algorithm. This algorithm has been demonstrated to be efficient and versatile. The results from these calculations illustrate the necessary numerical considerations required for solving both time-independent and time-dependent Schrödinger equations and form a basis that could be used for solving these and similar problems.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Dawei Cheng ◽  
Wenke Wang ◽  
Xi Chen ◽  
Zaiyong Zhang

For one-dimensional (1D) nonlinear consolidation, the governing partial differential equation is nonlinear. This paper develops the finite analytic method (FAM) to simulate 1D nonlinear consolidation under different time-dependent loading and initial conditions. To achieve this, the assumption of constant initial effective stress is not considered and the governing partial differential equation is transformed into the diffusion equation. Then, the finite analytic implicit scheme is established. The convergence and stability of finite analytic numerical scheme are proven by a rigorous mathematical analysis. In addition, the paper obtains three corrected semianalytical solutions undergoing suddenly imposed constant loading, single ramp loading, and trapezoidal cyclic loading, respectively. Comparisons of the results of FAM with the three semianalytical solutions and the result of FDM, respectively, show that the FAM can obtain stable and accurate numerical solutions and ensure the convergence of spatial discretization for 1D nonlinear consolidation.


2007 ◽  
Vol 44 (6) ◽  
pp. 717-725 ◽  
Author(s):  
Enrico Conte ◽  
Antonello Troncone

The paper deals with one-dimensional consolidation of saturated clays with variable compressibility and permeability. A formulation is developed to analyse the consolidation of thin clay layers subjected to time-dependent loading. Moreover, a simple solution procedure is presented, which makes use of some analytical expressions derived in this study in conjunction with the Fourier series. Comparisons with other analytical and numerical solutions are shown, and some aspects of the nonlinear consolidation caused by time-dependent loading are highlighted.Key words: one-dimensional consolidation, nonlinear theory, time-dependent loading, excess pore-water pressure, settlement rate.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 988 ◽  
Author(s):  
Dingxin Leng ◽  
Kai Xu ◽  
Liping Qin ◽  
Yong Ma ◽  
Guijie Liu

Rubber materials are extensively utilized for vibration mitigation. Creep is one of the most important physical properties in rubber engineering applications, which may induce failure issues. The purpose of this paper is to provide an engineering approach to evaluate creep performance of rubber systems. Using a combination of hyper-elastic strain energy potential and time-dependent creep damage function, new creep constitutive models were developed. Three different time-decay creep functions were provided and compared. The developed constitutive model was incorporated with finite element analysis by user subroutine and its engineering potential for predicting the creep response of rubber vibration devices was validated. Quasi-static and creep experiments were conducted to verify numerical solutions. The time-dependent, temperature-related, and loading-induced creep behaviors (e.g., stress distribution, creep rate, and creep degree) were explored. Additionally, the time–temperature superposition principle was shown. The present work may enlighten the understanding of the creep mechanism of rubbers and provide a theoretical basis for engineering applications.


2012 ◽  
Vol 1475 ◽  
Author(s):  
T. Ohi ◽  
T. Chiba ◽  
T. Nakagawa ◽  
T. Takase ◽  
T. Nakazawa ◽  
...  

ABSTRACTTo perform a safety assessment for the geological disposal of radioactive waste, it is important to understand the response characteristics of the disposal system. In this study, approximate analytical solutions for steady-state nuclide releases from the engineered barrier system (EBS) of a repository were derived for an orthogonal one-dimensional diffusion model. In these approximate analytical solutions, inventory depletion, decay during migration and the influence of groundwater flow in the excavation damaged zone (EDZ) were considered. These solutions were simplified by the Taylor theorem in order to clearly represent the response characteristics of the EBS. The validity of these solutions was shown by comparison with numerical solutions. The response characteristics of the EBS are useful for identifying target values for important parameters that would have the effect of improving the robustness of system safety. The robustness of the geological disposal system and the reliability of the safety assessment can thus potentially be improved using the approximate analytical solutions.


Author(s):  
Oleksandr Mostovenko ◽  
Serhii Kovalov ◽  
Svitlana Botvinovska

Taking into account force, temperature and other loads, the stress and strain state calculations methods of spatial structures involve determining the distribution of the loads in the three-dimensional body of the structure [1, 2]. In many cases the output data for this distribution can be the values of loadings in separate points of the structure. The problem of load distribution in the body of the structure can be solved by three-dimensional discrete interpolation in four-dimensional space based on the method of finite differences, which has been widely used in solving various engineering problems in different fields. A discrete conception of the load distribution at points in the body or in the environment is also required for solving problems by the finite elements method [3-7]. From a geometrical point of view, the result of three-dimensional interpolation is a multivariate of the four-dimensional space [8], where the three dimensions are the coordinates of a three-dimensional body point, and the fourth is the loading at this point. Such interpolation provides for setting of the three coordinates of the point and determining the load at that point. The simplest three-dimensional grid in the three-dimensional space is the grid based on a single sided hypercube. The coordinates of the nodes of such a grid correspond to the numbering of nodes along the coordinate axes. Discrete interpolation of points by the finite difference method is directly related to the numerical solutions of differential equations with given boundary conditions and also requires the setting of boundary conditions. If we consider a three-dimensional grid included into a parallelepiped, the boundary conditions are divided into three types: 1) zero-dimensional (loads at points), where the three edges of the grid converge; 2) one-dimensional (loads at points of lines), where the four edges of the grid converge; 3) two-dimensional (loads at the points of faces), where the five edges of the grid converge. The zero-dimensional conditions are boundary conditions for one-dimensional interpolation of the one-dimensional conditions, which, in turn, are boundary conditions for two-dimensional conditions, and the two-dimensional conditions are boundary conditions for determining the load on the inner points of the grid. If a load is specified only at certain points of boundary conditions, then the interpolation problem is divided into three stages: one-dimensional load interpolation onto the line nodes, two-dimensional load interpolation onto the surface nodes and three-dimensional load interpolation onto internal grid nodes. The proposed method of discrete three-dimensional interpolation allows, according to the specified values of force, temperature or other loads at individual points of the three-dimensional body, to interpolate such loads on all nodes of a given regular three-dimensional grid with cubic cells. As a result of interpolation, a discrete point framework of the multivariate is obtained, which is a geometric model of the distribution of physical characteristics in a given medium according to the values of these characteristics at individual points.


Sign in / Sign up

Export Citation Format

Share Document