A rate-dependent dynamic damage model in peridynamics for concrete under impact loading

2020 ◽  
Vol 29 (7) ◽  
pp. 1035-1058 ◽  
Author(s):  
Liwei Wu ◽  
Dan Huang ◽  
Yepeng Xu ◽  
Lei Wang

To study the dynamic behavior and impact damage and failure of concrete materials and structures, a dynamic damage model was reformulated under the framework of the non-local peridynamic theory in this paper. The stretch rate of material bonds, equivalent to the strain rate in classical continuum mechanics, was introduced, and a rate-dependent peridynamic model describing the dynamic damage and failure of concrete materials was then proposed, taking both the dynamic failure of bonds and the rate-sensitivity of damage evolution under different stretch rate into account. The connection between the stretch rate and strength and tensile and compressive failure of concrete materials was established in the peridynamic model. To verify the proposed dynamic damage model for concrete failure, several typical examples simulating the mixed-mode fracture of concrete specimen were investigated. The failure mode, crack propagation paths and the crack propagation speed in the specimen in different cases were captured, which agree well with the experimental results and available numerical results. After model validation, the effect of the number and length of pre-existing cracks on the dynamic failure of concrete components was investigated further.

Author(s):  
Fei Wang ◽  
Yu’e Ma ◽  
Yanning Guo ◽  
Wei Huang

Peridynamics (PD) is a new nonlocal theory that unifies the mechanics of discrete particles, continuum, and continuum with discontinuities, and it has inherent advantages in calculating the mixed-mode crack propagating. Functionally graded materials (FGMs) are the advanced composite materials, fracture behavior of which is complicated to be simulated by the traditional continuum mechanics. Hence, a PD model for FGMs is given to investigate the mixed-mode fracture behavior under quasi-static loading. Basic PD equations, damage model, and PD [Formula: see text]-integral for FGMs are discussed. A FORTRAN program of PD algorithm is coded to calculate the [Formula: see text]-integral and crack propagation of FGMs. The [Formula: see text]-integral and the crack paths of the PD model are verified by comparing with the published numerical and experimental results. Effects of the material gradient, the material gradient direction, and the stress load magnitude on the fracture behavior are investigated. It is shown that the PD [Formula: see text]-integral and the crack path are strongly affected by the material gradient and the gradient direction under the same stress load. When the gradient of FGMs is linear, the material gradient direction decides whether the mixed-mode crack kinks or not and the magnitude of stress determines the kinking angle.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Goran Ljustina ◽  
Martin Fagerström ◽  
Ragnar Larsson

The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the “damage” does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation.


2003 ◽  
Vol 70 (3) ◽  
pp. 454-457 ◽  
Author(s):  
Y.-Q. Zhang ◽  
H. Hao

This paper presents a dynamic damage model for predicting fracture and fragmentation of brittle materials subjected to loads with high loading rates. This model is based on the mechanics of microcrack nucleation, growth, and coalescence to formulate the evolution of damage. The damage in the model is assumed to be isotropic and is a function of time and applied stress. The model provides a direct, explicit, and quantitative method to determine the rate-dependent fracture stress and fragment size generated by crack coalescence in the dynamic fragmentation process. It considers the experimental facts that a brittle material does not fail if the applied stress is lower than its static strength and certain time duration is needed for fracture to take place when it is subjected to a stress higher than its static strength. Comparisons between theoretical predictions and test data are made and shown to be in good agreement.


2010 ◽  
Vol 26 (4) ◽  
pp. N23-N27 ◽  
Author(s):  
K. Aluru ◽  
F.-L. Wen ◽  
Y.-L. Shen

ABSTRACTA numerical study is undertaken to simulate failure of solder joint caused by cyclic shear deformation. A progressive ductile damage model is incorporated into the rate-dependent elastic-viscoplastic finite element analysis, resulting in the capability of simulating damage evolution and eventual failure through crack formation. It is demonstrated that quantitative information of fatigue life, as well as the temporal and spatial evolution of fatigue cracks, can be explicitly obtained.


1998 ◽  
Vol 65 (1) ◽  
pp. 25-29 ◽  
Author(s):  
J. G. Swadener ◽  
K. M. Liechti

An asymmetric increase in the apparent values of the interfacial fracture toughness with increasing mode II component of loading has been observed by several investigators. In this study, cracks were grown in a steady-state manner along the glass/epoxy interface in sandwich specimens in order to determine the mechanisms responsible for the shielding effect. Finite element analysis using a hydrostatic stress and strain rate dependent plasticity model for the epoxy and a cohesive zone model for the interface shows that plastic dissipation in the epoxy accounts for the asymmetric shielding seen in these experiments which cover a wide range of mode mix. Numerical predictions of normal crack-opening displacements yielded results that were consistent with measured values which were made as close as 0.3 μm from the crack tip.


Author(s):  
Junqiang Wang ◽  
Haitao Wang ◽  
Nan Lin ◽  
Honglian Ma ◽  
Jinlong Wang

The ductile crack propagation behavior of pressure equipment has always been the focus of structural integrity assessment. It is very important to find an effective three-dimensional (3D) damage model, which overcomes the geometric discontinuity and crack tip singularity caused by cracking. The cohesive force model (CZM), which is combined with the extended finite element method (XFEM), can solve element self-reconfiguration near the crack tip and track the crack direction. Based on the theory of void nucleation, growth and coalescence, the Gurson-Tvergaard-Needleman (GTN) damage model is used to study the fracture behavior of metallic materials, and agrees well with the experimental results. Two 3D crack propagation models are used to compare crack propagation behavior of pipe steel from the crack tip shape, fracture critical value of CTOA and CTOD, constraint effect, calculation accuracy, efficiency and mesh dependence etc. The results show that the GTN model has excellent applicability in the analysis of crack tip CTOD/CTOA, constraint effect, tunneling crack and so on, and its accuracy is high. However, the mesh of crack growth region needs to be extremely refined, and the element size is required to be 0.1–0.3mm and the calculation amount is large. The CZM model combined with XFEM has the advantages of high computational efficiency and free crack growth path, and the advantages are obvious in simulating the shear crack, combination crack and fatigue crack propagation. But, the crack tip shape and thickness effect of ductile tearing specimen can not be simulated, and the CTOA value of local crack tip is not accurate.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012073
Author(s):  
Xueyao Hu ◽  
Jiaojiao Tang ◽  
Wei Xiao ◽  
Kepeng Qu

Abstract A progressive damage model was presented for carbon fiber woven composites under low velocity impact, considering the strain rate sensitivity of both mechanical properties and failure mechanisms. In this model, strain rate dependency of elastic modulus and nominal strength along in-plane direction are considered. Based on the Weibull distribution, stiffness progressive degradation is conducted by introducing strain rate dependent damage variables for distinct damage modes. With the model implemented in ABAQUS/Explicit via user-defined material subroutine (VUMAT), the mechanical behavior and possible damage modes of composites along in-plane direction can be determined. Furthermore, a bilinear traction separation model and a quadratic stress criterion are applied to predict the initiation and evolution of interlaminar delamination. Comparisons are made between the experimental results and numerical simulations. It is shown that the mechanical response and damage characteristics under low velocity impact, such as contact force history and delamination, are more consistent with the experimental results when taken the strain rate effect into consideration.


2020 ◽  
Author(s):  
Chuang Liu ◽  
Dongzhi Sun ◽  
Xianfeng Zhang ◽  
Florence Andrieux ◽  
Tobias Gerster

Abstract Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry. To study the mechanical behavior of a typical ductile cast iron (GJS-450) with nodular graphite, uni-axial quasi-static and dynamic tensile tests at strain rates of 10− 4, 1, 10, 100, and 250 s− 1 were carried out. In order to investigate the effects of stress state, specimens with various geometries were used in the experiments. Stress–strain curves and fracture strains of the GJS-450 alloy in the strain-rate range of 10− 4 to 250 s− 1 were obtained. A strain rate-dependent plastic flow law based on the Voce model is proposed to describe the mechanical behavior in the corresponding strain-rate range. The deformation behavior at various strain rates is observed and analyzed through simulations with the proposed strain rate-dependent constitutive model. The available damage model from Bai and Wierzbicki is extended to take the strain rate into account and calibrated based on the analysis of local fracture strains. The validity of the proposed constitutive model including the damage model was verified by the corresponding experimental results. The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys. The predictions with the proposed constitutive model and damage models at various strain rates agree well with the experimental results, which illustrates that the rate-dependent flow rule and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.


Sign in / Sign up

Export Citation Format

Share Document