Anisotropic constitutive model coupled with damage for Sn-rich solder: Application to SnAgCuSb solder under tensile conditions

2021 ◽  
pp. 105678952110451
Author(s):  
Zhao Zhang ◽  
Sheng Liu ◽  
Kun Ma ◽  
Zhiwen Chen ◽  
Zhengfang Qian ◽  
...  

With the rapid development of microelectronics and nanoelectronics, Moore law has significantly slowed down and More than Moore based system in packaging (SiP) is expected to be more and more important, at least for next one to two decades. Mechanical behaviors of interconnect materials such as solders are critical for yield in processes and reliability in testing and operation. Based on the framework of crystal plastic theory and continuum damage mechanics, an anisotropic constitutive model coupled with damage was developed to describe the deformation behaviors of Sn-rich solder. In the proposed model, the inelastic shear rate function was presented by hyperbolic sinusoidal form and power law form. For the damage evolution law, the total shear strain was chosen as the damage function variable. The proposed model was implemented into the general finite element software ABAQUS by forward Euler integration procedure. Some simulation examples were performed to verify the proposed model by comparing the simulation results with the experiments at uniaxial tensile conditions with SnAgCuSb solder chosen as the Sn-rich solder. The tensile stress-strain curves of the simulation results agreed well with the experiments at small strain under different temperatures and strain rates. The simulated stress-rupture stages showed reasonable accuracy with the experiments under four representative tensile conditions. Different tensile stress-strain curves of single grains with orientation of (0-0-0)°, (0-45-0)°, and (0-90-0)° were obtained under the same loading conditions, with an inverse relationship between the tensile strength and elongation. This relationship was in accordance with a referable literature. All these results indicate that the proposed model can describe the deformation behaviors of SnAgCuSb solder well under the tensile conditions in consideration of the mechanical anisotropy and the damage evolution.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


2011 ◽  
Vol 243-249 ◽  
pp. 2310-2313 ◽  
Author(s):  
Hua Yan Yao ◽  
Zhen Hua Zhang ◽  
Zhao Hui Zhu

Water is an important factor that influences the mechanical properties of rock. Uniaxial compressive experiments have been carried out on sandstone under different cyclic times of drying and wetting. The corresponding complete stress-strain curves are obtained, and characteristics of deformation and failure are analyzed. Test results show that when sandstone samples are submitted to cyclic of drying and wetting, the uniaxial strength and Young's modulus of sandstone obviously decrease. Then, the improved Duncan constitutive model is developed, which can do better in describing sample’s deformation behaviors subject to different cyclic times of drying and wetting. Introduction


2020 ◽  
Vol 29 (6) ◽  
pp. 988-1008 ◽  
Author(s):  
Shijie Xie ◽  
Hang Lin ◽  
Yixian Wang ◽  
Yifan Chen ◽  
Wei Xiong ◽  
...  

The whole shear deformation of rock joints significantly affects the long-term behavior and safety of engineering projects. In this paper, a new damage constitutive model related to the Weibull distribution and statistical damage theory is proposed. This model considers the shear stiffness degradation, post-peak softening, and residual phase of rock joints in the whole shearing process. Main works include the three following aspects: First, the phase of initial damage is determined on the assumption that the joint shear failure is regarded as a result of damage evolution, according to the typical joint shear curve and the three-parameter Weibull distribution. Then, a statistical damage evolution model for the whole joint shearing process is introduced to make this model be capable of describing the residual phase of rock joints. Finally, a statistical constitutive model for the whole joint shearing process is proposed by statistical damage theory, and the calculated results of the models are compared to the experimental results. The results indicate that the proposed model shows a good agreement with the experimental examples, and the proposed model can distinctly reflect the effects of residual stress, peak stress, and shear stiffness. In addition, the model parameters can be mathematically confirmed and have distinct physical meanings.


2020 ◽  
Vol 975 ◽  
pp. 203-207
Author(s):  
Shih Tsung Hsu ◽  
Wen Chi Hu ◽  
Yu Heng Lin ◽  
Zhuo Ling

Constitutive models for soils are usually adopted in numerical method to analyze the behavior of geotechnical structures. This study performs a series of consolidated-undrained triaxial tests to establish the stress-strain curve of clay. A constitutive model that considers continuous strain hardening-softening is proposed based on the results of triaxial tests. Triaxial test results reveal that undrained shear strength linearly increases with an increase in consolidated pressure , the normalized undrained shear strength is about 0.52 not only for this study but also for the other two cases around Taipei Basin. Due to undrained condition, an associated flow rule between plastic strain increment and stress tensor is adopted. As accumulative plastic strain or/and consolidated pressure change, the mobilized undrained shear strength also changes. All parameters needed for the proposed model can be expressed as a function of undrained shear strength Su, The mobilized undrained shear strength for the proposed model during strain hardening-softening can be in term of accumulative plastic strain. This model can calculate the stress-strain curves of clayed soils accurately.


2016 ◽  
Vol 20 (3) ◽  
pp. 04015075 ◽  
Author(s):  
Guang Yang ◽  
Mehdi Zomorodian ◽  
Abdeldjelil Belarbi ◽  
Ashraf Ayoub

1995 ◽  
Vol 117 (4) ◽  
pp. 346-356 ◽  
Author(s):  
J. M. Bloom

This paper presents a brief history of the evolution of the Central Electricity Generating Board’s (CEGB) R-6 failure assessment diagram (FAD) procedure used in assessing defects in structural components. The reader is taken from the original CEGB R-6 FAD strip yield model to the deformation plastic failure assessment diagram (DPFAD), which is dependent on Ramberg-Osgood (R-O) materials to general stress-strain curves. An extension of the DPFAD approach is given which allows the use of material stress-strain data which do not follow the R-O equation such as stainless steel or carbon manganese steel. The validity of the new approach coined piecewise failure assessment diagram (PWFAD) is demonstrated through comparisons with the J-integral responses (expressed in terms of failure assessment diagram curves) for several cracked configurations of non-R-O materials. The examples were taken from both finite element and experimental results. The comparisons with these test cases demonstrate the accuracy of PWFAD. The use of PWFAD requires the availability of deformation plasticity J-integral solutions for several values of the strain-hardening exponent as well as uniaxial tensile stress-strain data at the temperature of interest. Lacking this information, the original R-O DPFAD approach using known engineering yield and ultimate strengths would give the best available approximation. However, it is strongly recommended that actual uniaxial tensile stress-strain data be used when available.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 430
Author(s):  
F. M.Z. Nasrun ◽  
M. F. Yahya ◽  
M. R. Ahmad ◽  
S. A. Ghani

An experimental study have been performed to investigate the uniaxial tensile stress-strain response on the 3D angle interlock (3DAI) woven fabric composite. The tensile analysis were examined based on different woven fabric set-up parameter of draw-in plan ; pointed (DRW 1), broken (DRW 2), broken mirror (DRW 3), and straight (DRW 4). Meanwhile, the woven fabric composite were produced based on 22 and 25 pick.cm-1 of weft densities. The outcomes produced shown that woven composite sample with 25 pick.cm-1 on DRW 4 projected the highest stress response, 113 MPa. Extensive review indicated that DRW 1 and 4 gave better tensile stress-strain response than the other counterpart. 


Sign in / Sign up

Export Citation Format

Share Document