Focused Updates: SGLT2 Inhibitors in Patients With Heart Failure and/or Chronic Kidney Disease

2020 ◽  
Vol 55 (2) ◽  
pp. 252-260
Author(s):  
Judy W. M. Cheng ◽  
Vincent Colucci ◽  
James S. Kalus ◽  
Sarah A. Spinler

Sodium-glucose cotransporter (SGLT2) inhibitors have demonstrated cardiovascular (CV) benefits in large-scale clinical trials of people who have type 2 diabetes and either established CV disease or multiple CV risk factors. These studies also indicated early signals in benefiting heart failure (HF) patients and those with chronic kidney diseases. This article reviews recent and future clinical studies that focus on evaluation of the use of SGLT2 inhibitors in HF management and renal protection.

2021 ◽  
Vol 22 (18) ◽  
pp. 9852
Author(s):  
Alex Ali Sayour ◽  
Mihály Ruppert ◽  
Attila Oláh ◽  
Kálmán Benke ◽  
Bálint András Barta ◽  
...  

Selective sodium–glucose cotransporter 2 (SGLT2) inhibitors reduced the risk of hospitalization for heart failure in patients with or without type 2 diabetes (T2DM) in large-scale clinical trials. The exact mechanism of action is currently unclear. The dual SGLT1/2 inhibitor sotagliflozin not only reduced hospitalization for HF in patients with T2DM, but also lowered the risk of myocardial infarction and stroke, suggesting a possible additional benefit related to SGLT1 inhibition. In fact, several preclinical studies suggest that SGLT1 plays an important role in cardiac pathophysiological processes. In this review, our aim is to establish the clinical significance of myocardial SGLT1 inhibition through reviewing basic research studies in the context of SGLT2 inhibitor trials.


2020 ◽  
Vol 35 (Supplement_1) ◽  
pp. i43-i47 ◽  
Author(s):  
Oshini Shivakumar ◽  
Naveed Sattar ◽  
David C Wheeler

Abstract Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular events, specifically those related to heart failure in patients with type 2 diabetes. Reductions in major adverse cardiovascular event (MACE) outcomes are also observed, but confined largely to patients who have prior cardiovascular disease. Cardiovascular outcome benefits extend to patients with type 2 diabetes and reduced estimated glomerular filtration (eGFR) rate down to 30 mL/min/1.73 m2 and to patients with heart failure but without diabetes. Ongoing trials are exploring whether patients with chronic kidney disease (CKD) but without diabetes will gain similar benefits from this class of agents. Although some safety concerns have emerged, it seems likely that SGLT2 inhibitors will be used more widely in CKD patients to reduce their cardiovascular risk.


2021 ◽  
Vol 26 (2S) ◽  
pp. 4534
Author(s):  
N. B. Perepech ◽  
I. E. Mikhailova

The review is devoted to the clinical efficacy of sodium-glucose cotransporter type 2 (SGLT2) inhibitors. Information on the mechanisms of drug action is given, as well as rationale for their use in the management of patients with diabetes and heart failure (HF) is provided. The results of large-scale randomized clinical trials evaluating the efficacy of SGLT2 inhibitors are discussed. We showed the beneficial effect of SGLT-2 inhibitors on the risk of cardiovascular events in patients with type 2 diabetes. In addition, an evidence of the ability of dapagliflozin and empagliflozin to improve the prognosis of patients with HF with reduced ejection fraction without diabetes are presented. The evidence and mechanisms of the nephroprotective action of SGLT2 inhibitors in patients with diabetes and HF are considered.


2019 ◽  
Vol 19 (20) ◽  
pp. 1818-1849 ◽  
Author(s):  
Ban Liu ◽  
Yuliang Wang ◽  
Yangyang Zhang ◽  
Biao Yan

: Type 2 diabetes mellitus is one of the most common forms of the disease worldwide. Hyperglycemia and insulin resistance play key roles in type 2 diabetes mellitus. Renal glucose reabsorption is an essential feature in glycaemic control. Kidneys filter 160 g of glucose daily in healthy subjects under euglycaemic conditions. The expanding epidemic of diabetes leads to a prevalence of diabetes-related cardiovascular disorders, in particular, heart failure and renal dysfunction. Cellular glucose uptake is a fundamental process for homeostasis, growth, and metabolism. In humans, three families of glucose transporters have been identified, including the glucose facilitators GLUTs, the sodium-glucose cotransporter SGLTs, and the recently identified SWEETs. Structures of the major isoforms of all three families were studied. Sodium-glucose cotransporter (SGLT2) provides most of the capacity for renal glucose reabsorption in the early proximal tubule. A number of cardiovascular outcome trials in patients with type 2 diabetes have been studied with SGLT2 inhibitors reducing cardiovascular morbidity and mortality. : The current review article summarises these aspects and discusses possible mechanisms with SGLT2 inhibitors in protecting heart failure and renal dysfunction in diabetic patients. Through glucosuria, SGLT2 inhibitors reduce body weight and body fat, and shift substrate utilisation from carbohydrates to lipids and, possibly, ketone bodies. These pleiotropic effects of SGLT2 inhibitors are likely to have contributed to the results of the EMPA-REG OUTCOME trial in which the SGLT2 inhibitor, empagliflozin, slowed down the progression of chronic kidney disease and reduced major adverse cardiovascular events in high-risk individuals with type 2 diabetes. This review discusses the role of SGLT2 in the physiology and pathophysiology of renal glucose reabsorption and outlines the unexpected logic of inhibiting SGLT2 in the diabetic kidney.


2020 ◽  
Vol 26 ◽  
Author(s):  
Dimos Karangelis ◽  
C. David Mazer ◽  
Dimitrios Stakos ◽  
Aphrodite Tzifa ◽  
Spiros Loggos ◽  
...  

Background: Type 2 diabetes mellitus (DM) is associated with a considerable risk of cardiovascular and renal disease, including heart failure. Sodium–glucose cotransporter 2 (SGLT2) inhibitors have demonstrated unprecedented cardiorenal protective effects in large scale clinical trials of patients with or without diabetes and either established cardiovascular disease (CV) or multiple CV risk factors. Objective: Herein we aim to focus on the role of SGLT2 inhibitors regarding the improvement in heart failure outcomes and the proposed mechanisms of action by which these drugs confer their beneficial effect. Methods: PubMed, Embase and Google Scholar databases were searched to identify eligible articles which are comprehensively summarized and discussed. Results: The most commonly discussed mechanisms of action are diuresis and natriuresis, reduction in preload, afterload, and ventricular mass, as well as stimulation of erythropoietin production and improved myocardial energetics. SGLT2 inhibitors improve outcomes in patients with established heart failure (HF) and reduce the risk of death and HF admissions in patients with established chronic HF with reduced ejection fraction (HFrEF), either with or without diabetes. Conclusion: Potential key mechanisms that may explain the notable cardioprotective benefits of SGLT2 inhibitors have been outlined. These agents have recently received class Ia recommendation in specific groups of people with DM to lower the risk of hospitalization for HF and risk of death, while these benefits may also extend to people without diabetes. It remains to be seen whether they will also emerge as treatment approaches in the acute phase of CV episodes.


2019 ◽  
Vol 13 (4) ◽  
pp. 205-224
Author(s):  
Elisa Fabbri ◽  
Maurizio Nizzoli

Heart failure (HF) and type 2 diabetes (T2D) often coexist and having both the diseases compared to having one alone is associated with greater challenges in their management/treatment and worse outcomes. The present review of the literature is aimed at providing a comprehensive synopsis of the main evidences about the treatment of the two coexisting conditions. In particular, the recent introduction of new glucose-lowering drugs has been deeply changing the therapeutic approach to T2D. Big randomized controlled trails (RCTs) developed to test the cardiovascular safety of these new drugs consistently highlighted a reduction of the risk of hospitalization for HF in patients with T2D treated with sodium-glucose co-transporter 2 (SGLT2) inhibitors, suggesting a potential and revolutionary class effect probably related to their diuretic effect. Moreover, a renal protective effect of this drug class has also been emerging and the beneficial effect of SGLT2 inhibitors on the risk of HF hospitalization seems to be even greater in patients with worse renal function. In conclusion, although the underlying mechanisms are not fully understood, SGLT2 inhibitors appear to be a promising tool to treat HF and T2D. Ongoing RCTs specifically enrolling patients with HF treated with SGLT2 inhibitors will provide more insights and further information.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Milton Packer

Abstract Four large-scale trials in type 2 diabetes have shown that sodium-glucose cotransporter 2 (SGLT2) inhibitors prevent the occurrence of serious heart failure events. Additionally, the DAPA-HF trial demonstrated a benefit of dapagliflozin to reduce major adverse outcomes in patients with established heart failure with a reduced ejection fraction. The trial sheds light on potential mechanisms. In DAPA-HF, the benefits of dapagliflozin on heart failure were seen to a similar extent in both patients with or without diabetes, thus undermining the hypothesis that these drugs mitigate glycemia-related cardiotoxicity. The action of SGLT2 inhibitors to promote ketogenesis is also primarily a feature of the action of these drugs in patients with diabetes, raising doubts that enhanced ketogenesis contributes to the benefit on heart failure. Also, dapagliflozin does not have a meaningful effect to decrease circulating natriuretic peptides, and it did not potentiate the actions of diuretics in DAPA-HF; moreover, intensification of diuretics therapy does not reduce cardiovascular death, questioning a benefit of SGLT2 inhibitors that is mediated by an action on renal sodium excretion. Finally, although hematocrit increases with SGLT2 inhibitors might favorably affect patients with coronary artery disease, in DAPA-HF, the benefit of dapagliflozin was similar in patients with or without an ischemic cardiomyopathy; furthermore, increases in hematocrit do not favorably affect the clinical course of patients with heart failure. Therefore, the results of DAPA-HF do not support many currently-held hypotheses about the mechanism of action of SGLT2 inhibitors in heart failure. Ongoing trials are likely to provide further insights.


2020 ◽  
Vol 25 (8) ◽  
pp. 4049
Author(s):  
N. R. Khasanov

SGLT2 inhibitors have been shown to reduce the risk of cardiovascular events and the development and decompensation of heart failure (HF) in patients with type 2 diabetes (T2D). The improved prognosis in HF may be related not only to the hypoglycemic effect of this drug class. The DAPA-HF study, which included patients with HF with reduced ejection fraction, demonstrated the benefit of dapagliflozin in reducing the risk of cardiovascular death and worsening HF, as well as improving HF symptoms compared to placebo, regardless of the presence of T2D and the recommended therapy for HF.


2019 ◽  
Vol 20 (14) ◽  
pp. 3581 ◽  
Author(s):  
Ryuji Okamoto ◽  
Yusuf Ali ◽  
Ryotaro Hashizume ◽  
Noboru Suzuki ◽  
Masaaki Ito

Brain natriuretic peptide (BNP) is an important biomarker for patients with heart failure, hypertension and cardiac hypertrophy. Although it is known that BNP levels are relatively higher in patients with chronic kidney disease and no heart disease, the mechanism remains unknown. Here, we review the functions and the roles of BNP in the heart-kidney interaction. In addition, we discuss the relevant molecular mechanisms that suggest BNP is protective against chronic kidney diseases and heart failure, especially in terms of the counterparts of the renin-angiotensin-aldosterone system (RAAS). The renal medulla has been reported to express depressor substances. The extract of the papillary tips from kidneys may induce the expression and secretion of BNP from cardiomyocytes. A better understanding of these processes will help accelerate pharmacological treatments for heart-kidney disease.


Sign in / Sign up

Export Citation Format

Share Document